
Essays on Yacas

by the Yacas team 1

Yacas version: 1.3.6
generated on November 25, 2014

This is a book of essays on Yacas. It covers various topics, from using the Yacas system for specific
calculations to general issues related to the Yacas system development and maintenance.

1This text is part of the Yacas software package. Copyright 2000–2002. Principal documentation authors: Ayal Zwi Pinkus,
Serge Winitzki, Jitse Niesen. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Contents

1 Yacas: A do-it-yourself symbolic algebra environment 2
1.1 Introduction . 2
1.2 Basic design . 2
1.3 The Yacas kernel functionality . 4
1.4 The Yacas scripting language . 5
1.5 Currently supported CAS features . 5
1.6 Interface . 7
1.7 Documentation . 7
1.8 Future plans . 7
1.9 References . 7

2 M. Wester’s CAS benchmark and Yacas 8

3 On Yacas programming 11
3.1 Example: implementing a formal grammar . 11
3.2 Example: Using rules with special syntax operators creatively . 12

4 Why −x−1 and − 1
x are not the same in Yacas 16

4.1 Canonical and normal representations . 16
4.2 But how can we then build a powerful CAS? . 17
4.3 Conclusion . 17

5 For Yacas developers 18
5.1 A crash course in Yacas maintenance for developers . 18
5.2 Preparing and maintaining Yacas documentation . 19
5.3 The Yacas build system . 28

6 Designing modules in the Yacas scripting language 32
6.1 Introduction . 32
6.2 Demonstration of the problem . 32
6.3 Declaring resources to be local to the module . 32
6.4 When to use and when not to use LocalSymbols . 33

7 The Yacas arithmetic library 34
7.1 Introduction . 34
7.2 The link between the interpreter and the arithmetic library . 34
7.3 Interface of the BigNumber class . 34
7.4 Precision of arithmetic operations . 37
7.5 Implementation notes . 44

8 GNU Free Documentation License 47

1

Chapter 1

Yacas: A do-it-yourself symbolic algebra
environment

A much shorter and more polished version of this paper is
published as: Ayal Z. Pinkus and Serge Winitzki, “YACAS:
a do-it-yourself computer algebra system”, Lecture Notes in
Artificial Intelligence 2385, pp. 332 - 336 (Springer-Verlag,
2002).

by Ayal Zwi Pinkus and Serge Winitzki

Abstract

We describe the design and implementation of Yacas, a
free computer algebra system currently under development.
The system consists of a core interpreter and a library of
scripts that implement symbolic algebra functionality. The
interpreter provides a high-level weakly typed functional
language designed for quick prototyping of computer alge-
bra algorithms, but the language is suitable for all kinds
of symbolic manipulation. It supports conditional term
rewriting of symbolic expression trees, closures (pure func-
tions) and delayed evaluation, dynamic creation of trans-
formation rules, arbitrary-precision numerical calculations,
and flexible user-defined syntax using infix notation. The
library of scripts currently provides basic numerical and
symbolic algebra functionality, such as polynomials and el-
ementary functions, limits, derivatives and (limited) inte-
gration, solution of (simple) equations. The main advan-
tages of Yacas are: free (GPL) software; a flexible and
easy-to-use programming language with a comfortable and
adjustable syntax; cross-platform portability and small re-
source requirements; and extensibility.

1.1 Introduction

Yacas is a computer algebra system (CAS) which has been
in development since the beginning of 1999. The goal was
to make a small system that allows to easily prototype and
research symbolic mathematics algorithms. A secondary
future goal is to evolve Yacas into a full-blown general
purpose CAS.

Yacas is primarily intended to be a research tool for
easy exploration and prototyping of algorithms of symbolic
computation. The main advantage of Yacas is its rich
and flexible scripting language. The language is closely
related to LISP WH89 but has a recursive descent infix grammar
parser ASU86 which supports defining infix operators at run time

similarly to Prolog B86, and includes expression transformation
(term rewriting) as a basic feature of the language.

The Yacas language interpreter comes with a library of
scripts that implement a set of computer algebra features. The
Yacas script library is in active development and at the present
stage does not offer the rich functionality of industrial-strength
systems such as Mathematica or Maple. Extensive implementa-
tion of algorithms of symbolic computation is one of the future
development goals.

Yacas handles input and output in plain ASCII, either inter-
actively or in batch mode. (A graphical interface is under devel-
opment.) There is also an optional plugin mechanism whereby
external libraries can be linked into the system to provide ex-
tra functionality. Basic facilities are in place to compile Yacas
scripts to C++ so they can be compiled into plugins.

1.2 Basic design

Yacas consists of a “core engine” (kernel), which is an inter-
preter for the Yacas scripting language, and a library of script
code.

The Yacas engine has been implemented in a subset of C++
which is supported by almost all C++ compilers. The design
goals for Yacas core engine are: portability, self-containment
(no dependence on extra libraries or packages), ease of imple-
menting algorithms, code transparency, and flexibility. The Ya-
cas system as a whole falls into the “prototype/hacker” rather
than into the “axiom/algebraic” category, according to the ter-
minology of Fateman F90. There are relatively few specific de-
sign decisions related to mathematics, but instead the emphasis
is made on extensibility.

The kernel offers sufficiently rich but basic functionality
through a limited number of core functions. This core function-
ality includes substitutions and rewriting of symbolic expression
trees, an infix syntax parser, and arbitrary precision numerics.
The kernel does not contain any definitions of symbolic mathe-
matical operations and tries to be as general and free as possible
of predefined notions or policies in the domain of symbolic com-
putation.

The plugin inter-operability mechanism allows extension of
the Yacas kernel and the use of external libraries, e.g. GUI
toolkits or implementations of special-purpose algorithms. A
simple C++ API is provided for writing “stubs” that make ex-
ternal functions appear in Yacas as new core functions. Plugins
are on the same footing as the Yacas kernel and can in prin-
ciple manipulate all Yacas internal structures. Plugins can be
compiled either statically or dynamically as shared libraries to
be loaded at runtime from Yacas scripts. In addition, Yacas

2

scripts can be compiled to C++ code for further compilation
into a plugin. Systems that don’t support plugins can then link
these modules in statically. The system can also be run with-
out the plugins, for debugging and development purposes. The
scripts will be interpreted in that case.

The script library contains declarations of transformation
rules and of function syntax (prefix, infix etc.). The intention is
that all symbolic manipulation algorithms, definitions of math-
ematical functions etc. should be held in the script library and
not in the kernel. The only exception so far is for a very small
number of mathematical or utility functions that are frequently
used; they are compiled into the core for speed.

Portability

Yacas is designed to be as platform-independent as possible.
All platform-specific parts have been clearly separated to facil-
itate porting. Even the standard C++ library is considered to
be platform-specific, as there exist platforms without support
for the standard C++ library (e.g. the EPOC32 platform).

The primary development platform is GNU/Linux. Cur-
rently Yacas runs under various Unix variants, Windows envi-
ronments, Psion organizers (EPOC32), Ipaq PDAs, BeOS, and
Apple iMacs. Creating an executable for another platform (in-
cluding embedded platforms) should not be difficult.

A self-contained system

Yacas should work as a standalone package, requiring mini-
mum support from other operating system components. Yacas
takes input and output in plain ASCII, either interactively or in
batch mode. (An optional graphical interface is under develop-
ment.) The system comes with its own (unoptimized) arbitrary
precision arithmetic module but could be compiled to use an-
other arbitrary precision arithmetic library; currently linking to
gmp is experimentally supported. There is also an optional plu-
gin mechanism whereby external libraries can be linked into the
system to provide extra functionality.

Self-containment is a requirement if the program is to be easy
to port. A dependency on libraries that might not be available
on other platforms would reduce portability. On the other hand,
Yacas can be compiled with a complement of external libraries
on “production” platforms.

Ease of use

Yacas is used mainly by executing programs written in the
Yacas script language. A design goal is to create a high-level
language that allows the user to conveniently express symbolic
algorithms. A few lines of user code should go a long way.

One major advantage of Yacas is the flexibility of its syntax.
Although Yacas works internally as a LISP-style interpreter,
all user interaction is through the Yacas script language which
has a flexible infix grammar. Infix operators are defined by the
user and may contain non-alphabetic characters such as “=” or
“#”. This means that the user interacts with Yacas using a
comfortable and adjustable infix syntax, rather than a LISP-
style syntax. The user can introduce such syntactic conventions
as are most convenient for a given problem.

For example, the Yacas script library defines infix operators
“+”, ”*” and so on with conventional precedence, so that an
algebraic expression can be entered in the familiar infix form
such as

(x+1)^2 - (y-2*z)/(y+3) + Sin(x*Pi/2)

Once such infix operators are defined, it is possible to describe
new transformation rules directly using the new syntax. This
makes it easy to develop simplification or evaluation procedures
adapted to a particular problem.

Suppose the user needs to reorder expressions containing non-
commutative creation and annihilation operators of quantum
field theory. It takes about 20 lines of Yacas script code to
define an infix operation “**” to express non-commutative mul-
tiplication with the appropriate commutation relations and to
automatically normal-order all expressions involving these sym-
bols and other (commutative) factors. Once the operator ** is
defined (with precedence 40),

Infix("**", 40);

the rules that express distributivity of the operation ** with
respect to addition may look like this:

15 # (_x + _y) ** _z <-- x ** z + y ** z;

15 # _z ** (_x + _y) <-- z ** x + z ** y;

Here, 15 # is a specification of the rule precedence, x denotes
a pattern-matching variable x and the expression to the right
of <-- is to be substituted instead of a matched expression on
the left hand side. Since all transformation rules are applied
recursively, these two lines of code are enough for the Yacas
engine to expand all brackets in any expression containing the
infix operators ** and +.

Rule-based programming is not the only method that can be
used in Yacas scripts; there are alternatives that may be more
useful in some situations. For example, the familiar if / else

constructs, For, ForEach loops are defined in the script library
for the convenience of users.

Standard patterns of procedural programming, such as sub-
routines that return values, with code blocks and temporary
local variables, are also available. (A “subroutine” is imple-
mented as a new “ground term” with a single rule defined for
it.) Users may freely combine rules with C-like procedures or
LISP-like list processing primitives such as Head(), Tail().

Code clarity vs. speed

Speed is obviously an important factor. For Yacas, where a
choice had to be made between speed and clarity of code, clar-
ity was chosen. Yacas is mainly a prototyping system and its
future maintainability is more important.

This means that special-purpose systems designed for specific
types of calculations, as well as heavily optimized industrial-
strength computer algebra systems, will outperform Yacas.
However, special-purpose or optimized external libraries can be
dynamically linked into Yacas using the plugin mechanism.

Flexible, “policy-free” engine

The core engine of the Yacas system interprets the Yacas script
language. The reason to implement yet another LISP-based cus-
tom language interpreter instead of taking an already existing
one was to have full control over the design of the system and
to make it self-contained. While most of the features of the
Yacas script language are “syntactic sugar” on top of a LISP
interpreter, some features not commonly found in LISP systems
were added.

The script library contains declarations of transformation
rules and of function syntax (prefix, infix etc.). The intention is
that all symbolic manipulation algorithms, definitions of math-
ematical functions and so on should be held in the script library
and not in the kernel. The only exception so far is for a very

3

small number of mathematical or utility functions that are fre-
quently used; they are compiled into the core for speed.

For example, the mathematical operator “+” is an infix oper-
ator defined in the library scripts. To the kernel, this operator
is on the same footing as any other function defined by the user
and can be redefined. The Yacas kernel itself does not store
any properties for this operator. Instead it relies entirely on the
script library to provide transformation rules for manipulating
expressions involving the operator “+”. In this way, the kernel
does not need to anticipate all possible meanings of the operator
“+” that users might need in their calculations.

This policy-free scheme means that Yacas is highly config-
urable through its scripting language. It is possible to create
an entirely different symbolic manipulation engine based on the
same C++ kernel, with different syntax and different naming
conventions, by simply using another script library instead of
the current library scripts. An example of the flexibility of the
Yacas system is a sample script wordproblems.ys that comes
with the distribution. It contains a set of rule definitions that
make Yacas recognize simple English sentences, such as “Tom
has 3 apples” or “Jane gave an apple to Tom”, as valid Yacas
expressions. Yacas can then “evaluate” these sentences to True

or False according to the semantics of the current situation de-
scribed in them.

The “policy-free” concept extends to typing: strong typing
is not required by the kernel, but can be easily enforced by the
scripts if needed for a particular problem. The language offers
features, but does not enforce their use. Here is an example of
a policy implemented in the script library:

61 # x_IsPositiveNumber ^ y_IsPositiveNumber

<-- MathPower(x,y);

By this rule, expressions of the form xŷ (representing powers
xy) are evaluated and replaced by a number if and only if x and
y are positive numerical constants. (The function MathPower is
defined in the kernel.) If this simplification by default is not
desirable, the user could erase this rule from the library and
have a CAS without this feature.

1.3 The Yacas kernel functionality

Yacas script is a functional language based on various ideas
that seemed useful for an implementation of CAS: list-based
data structures, object properties, and functional programming
(a la LISP); term rewriting [BN98] with pattern matching some-
what along the lines of Mathematica; user-defined infix oper-
ators a la PROLOG; delayed evaluation of expressions; and
arbitrary-precision arithmetic. Garbage collection is imple-
mented through reference counting.

The kernel provides three basic data types: numbers, strings,
and atoms, and two container types: list and static array (for
speed). Atoms are implemented as strings that can be assigned
values and evaluated. Boolean values are simply atoms True

and False. Numbers are represented by objects on which arith-
metic can be performed immediately. Expression trees, associ-
ation (hash) tables, stacks, and closures (pure functions) are all
implemented using nested lists. In addition, more data types
can be provided by plugins. Kernel primitives are available for
arbitrary-precision arithmetic, string manipulation, array and
list access and manipulation, for basic control flow, for assign-
ing variables (atoms) and for defining rules for functions (atoms
with a function syntax).

The interpreter engine recursively evaluates expression trees
according to user-defined transformation rules from the script li-
brary. Evaluation proceeds bottom-up, that is, for each function

term, the arguments are evaluated first and then the function is
applied to these values.

A HoldArg() primitive is provided to not evaluate certain ar-
guments of certain functions before passing them on as param-
eters to these functions. The Hold() and Eval() primitives,
similarly to LISP’s QUOTE and EVAL, can be used to stop the
recursive application of rules at a certain point and obtain an
unevaluated expression, or to initiate evaluation of an expres-
sion which was previously held unevaluated.

When an expression can not be transformed any further, that
is, when no more rules apply to it, the expression is returned
unevaluated. For instance, a variable that is not assigned a
value will return unevaluated. This is a desired behavior in a
symbolic manipulation system. Evaluation is treated as a form
of “simplification”, in that evaluating an expression returns a
simplified form of the input expression.

Rules are matched by a pattern expression which can contain
pattern variables, i.e. atoms marked by the “ ” operator. During
matching, each pattern variable atom becomes a local variable
and is tentatively assigned the subexpression being matched.
For example, the pattern x + y can match an expression a*x+b

and then the pattern variable x will be assigned the value a*x

(unevaluated) and the variable y will have the value b.

This type of semantic matching has been frequently imple-
mented before in various term rewriting systems (see, e.g.,
[C86]). However, the Yacas language offers its users an ability
to create a much more flexible and powerful term rewriting sys-
tem than one based on a fixed set of rules. Here are some of the
features:

First, transformation rules in Yacas have predicates that con-
trol whether a rule should be applied to an expression. Predi-
cates can be any Yacas expressions that evaluate to the atoms
True or False and are typically functions of pattern variables.
A predicate could check the types or values of certain subex-
pressions of the matching context (see the x ^ y example in
the previous subsection).

Second, rules are assigned a precedence value (a positive inte-
ger) that controls the order of rules to be attempted. Thus Ya-
cas provides somewhat better control over the automatic recur-
sion than the pattern-matching system of Mathematica which
does not allow for rule precedence. The interpreter will first ap-
ply the rule that matches the argument pattern, for which the
predicate returns True, and which has the least precedence.

Third, new rules can be defined dynamically as a side-effect
of evaluation. This means that there is no predefined “ranking
alphabet” of “ground terms” (in the terminology of [TATA99]),
in other words, no fixed set of functions with predefined arities.
It is also possible to define a “rule closure” that defines rules
depending on its arguments, or to erase rules. Thus, a Ya-
cas script library (although it is read-only) does not represent
a fixed tree rewriting automaton. An implementation of ma-
chine learning is possible in Yacas (among other things). For
example, when the module wordproblems.ys (mentioned in the
previous subsection) ”learns” from the user input that apple

is a countable object, it defines a new postfix operator apples

and a rule for its evaluation, so the expression 3 apples is later
parsed as a function apples(3) and evaluated according to the
rule.

Fourth, Yacas expressions can be “tagged” (assigned a
“property object” a la LISP) and tags can be checked by pred-
icates in rules or used in the evaluation.

Fifth, the scope of variables can be controlled. In addition
to having its own local variables, a function can be allowed to
access local variables of its calling environment (the UnFence()

primitive). It is also possible to encapsulate a group of variables

4

and functions into a “module”, making some of them inacces-
sible from the outside (the LocalSymbols() primitive). The
scoping of variables is a “policy decision”, to be enforced by
the script which defines the function. This flexibility is by de-
sign and allows to easily modify the behavior of the interpreter,
effectively changing the language as needed.

1.4 The Yacas scripting language

The Yacas interpreter is sufficiently powerful so that the func-
tions For, ForEach, if, else etc., as well as the convenient
shorthand “...<--...” for defining new rules, can be defined in
the script library itself rather than in the kernel. This power
is fully given to the user, since the library scripts are on the
same footing as any user-defined code. Some library functions
are intended mainly as tools available to a Yacas user to make
algorithm implementation more comfortable. Below are some
examples of the features provided by the Yacas script language.

Yacas supports “function overloading”: it allows a user to
declare functions f(x) and f(x,y), each having their own set of
transformation rules. Of course, different rules can be defined
for the same function name with the same number of arguments
(arity) but with different argument patterns or different predi-
cates.

Simple transformations on expressions can be performed us-
ing rules. For instance, if we need to expand the natural loga-
rithm in an expression, we could use the following rules:

log(_x * _y) <-- log(x) + log(y);

log(_x ^ _n) <-- n * log(x);

These two rules define a new symbolic function log which will
not be evaluated but only transformed if one of these two rules
are applicable. The symbol , as before, indicates that the fol-
lowing atom is a pattern variable that matches subexpressions.

After entering these two rules, the following interactive ses-
sion is possible:

In> log(a*x^2)

log(a) + 2 * log(x)

Integration of the new function log can be defined by adding
a rule for the AntiDeriv function atom,

AntiDeriv(_x,log(_x)) <-- x*log(x)-x;

Now Yacas can do integrations involving the newly defined log

function, for example:

In> Integrate(x)log(a*x^n)

log(a) * x + n * (x * log(x) - x) + C18

In> Integrate(x,B,C)log(a*x^n)

log(a) * C + n * (C * log(C) - C) -

(log(a) * B + n * (B * log(B) - B))

Rules are applied when their associated patterns match and
when their predicates return True. Rules also have precedence,
an integer value to indicate which rules need to be applied first.
Using these features, a recursive implementation of the integer
factorial function may look like this in Yacas script,

10 # Factorial(_n) _ (n=0) <-- 1;

20 # Factorial(n_IsInteger) _ (n>0) <--

n*Factorial(n-1);

Here the rules have precedence 10 and 20, so that the first rule
will be tried first and the recursion will stop when n = 0 is
reached.

Rule-based programming can be freely combined with pro-
cedural programming when the latter is a more appropri-
ate method. For example, here is a function that computes
(xn mod m) efficiently:

powermod(x_IsPositiveInteger,

n_IsPositiveInteger,

m_IsPositiveInteger) <--

[

Local(result);

result:=1;

x:=Mod(x,m);

While(n != 0)

[

if ((n&1) = 1)

[

result := Mod(result*x,m);

];

x := Mod(x*x,m);

n := n>>1;

];

result;

];

Interaction with the function powermod(x,n,m) would then
look like this:

In> powermod(2,10,100)

Out> 24;

In> Mod(2^10,100)

Out> 24;

In> powermod(23234234,2342424234,232423424)

Out> 210599936;

1.5 Currently supported CAS fea-
tures

Yacas consists of approximately 22000 lines of C++ code and
13000 lines of scripting code, with 170 functions defined in the
C++ kernel and 600 functions defined in the scripting language.
These numbers are deceptively small. The program is written
in clean and simple style to keep it maintainable. Excessive
optimization tends to bloat software and make it less readable.

A base of mathematical capabilities has already been imple-
mented in the script library (the primary sources of inspiration
were the books [K98], [GG99] and [B86]). The script library
is currently under active development. The following section
demonstrates a few facilities already offered in the current sys-
tem.

Basic operations of elementary calculus have been imple-
mented:

In> Limit(n,Infinity)(1+(1/n))^n

Exp(1)

In> Limit(h,0) (Sin(x+h)-Sin(x))/h

Cos(x)

In> Taylor(x,0,5)ArcSin(x)

3 5

5

x 3 * x

x + -- + ------

6 40

In> InverseTaylor(x,0,5)Sin(x)

5 3

3 * x x

------ + -- + x

40 6

In> Integrate(x,a,b)Ln(x)+x

2 / 2 \

b | a |

b * Ln(b) - b + -- - | a * Ln(a) - a + -- |

2 \ 2 /

In> Integrate(x)1/(x^2-1)

Ln(2 * (x - 1)) Ln(2 * (x + 1))

------------------- - ------------------- + C38

2 2

In> Integrate(x)Sin(a*x)^2*Cos(b*x)

Sin(b * x) Sin(-2 * x * a + b * x)

------------ - ------------------------- -

2 * b 4 * (-2 * a + b)

Sin(-2 * x * a - b * x)

------------------------- + C39

4 * (-2 * a - b)

In> OdeSolve(y’’==4*y)

C193 * Exp(-2 * x) + C195 * Exp(2 * x)

Solving systems of equations has been implemented using a
generalized Gaussian elimination scheme:

In> Solve({x+y+z==6, 2*x+y+2*z==10, \

In> x+3*y+z==10}, \

In> {x,y,z}) [1]

Out> {4-z,2,z};

(The solution of this underdetermined system is returned as a
vector, so x = 4− z, y = 2, and z remains arbitrary.)

A small theorem prover [B86] using a resolution principle is
offered:

In> CanProve(P Or (Not P And Not Q))

Not(Q) Or P

In> CanProve(a > 3 And a < 2)

False

Various exact and arbitrary-precision numerical algorithms
have been implemented:

In> N(1/7,40); // evaluate to 40 digits

Out> 0.1428571428571428571428571428571428571428;

In> Decimal(1/7); // obtain decimal period

Out> {0,{1,4,2,8,5,7}};

In> N(LnGamma(1.234+2.345*I)); // gamma-function

Out> Complex(-2.13255691127918,0.70978922847121);

Various domain-specific expression simplifiers are available:

In> RadSimp(Sqrt(9+4*Sqrt(2)))

Sqrt(8) + 1

In> TrigSimpCombine(Sin(x)^2+Cos(x)^2)

1

In> TrigSimpCombine(Cos(x/2)^2-Sin(x/2)^2)

Cos(x)

In> GcdReduce((x^2+2*x+1)/(x^2-1),x)

x + 1

x - 1

Univariate polynomials are supported in a dense representa-
tion, and multivariate polynomials in a sparse representation:

In> Factor(x^6+9*x^5+21*x^4-5*x^3-54*x^2-12*x+40)

3 2

(x + 2) * (x - 1) * (x + 5)

In> Apart(1/(x^2-x-2))

1 1

------------- - -------------

3 * (x - 2) 3 * (x + 1)

In> Together(%)

9

2

9 * x - 9 * x - 18

In> Simplify(%)

1

2

x - x - 2

Various “syntactic sugar” functions are defined to more easily
enter expressions:

In> Ln(x*y) /: { Ln(_a*_b) <- Ln(a) + Ln(b) }

Ln(x) + Ln(y)

In> Add(x^(1 .. 5))

2 3 4 5

x + x + x + x + x

In> Select("IsPrime", 1 .. 15)

Out> {2,3,5,7,11,13};

Groebner bases [GG99] have been implemented:

In> Groebner({x*(y-1),y*(x-1)})

/ \

6

| x * y - x |

| |

| x * y - y |

| |

| y - x |

| |

| 2 |

| y - y |

\ /

(From this it follows that x = y, and x2 = x so x is 0 or 1.)

Symbolic inverses of matrices:

In> Inverse({{a,b},{c,d}})

/ \

| / d \ / -(b) \ |

| | ------------- | | ------------- | |

| \ a * d - b * c / \ a * d - b * c / |

| |

| / -(c) \ / a \ |

| | ------------- | | ------------- | |

| \ a * d - b * c / \ a * d - b * c / |

\ /

This list of features is not exhaustive.

1.6 Interface

Currently, Yacas is primarily a text-oriented application with
interactive interface through the text console. Commands are
entered and evaluated line by line; files containing longer code
may be loaded and evaluated. A “notebook” interface under the
GNU Emacs editor is available. There is also an experimental
graphical interface (proteus) for Unix and Windows environ-
ments.

Debugging facilities are implemented, allowing to trace exe-
cution of a function, trace application of a given rule pattern,
examine the stack when recursion did not terminate, or an on-
line debugger from the command line. An experimental debug
version of the Yacas executable that provides more detailed
information can be compiled.

1.7 Documentation

The documentation for the Yacas is extensive and is actively
updated, following the development of the system. Documenta-
tion currently consists of two tutorial guides (user’s introduction
and programmer’s introduction), a collection of essays that de-
scribe some advanced features in more detail, and a full reference
manual.

Yacas currently comes with its own document formatting
module that allows maintenance of documentation in a special
plain text format with a minimal markup. This text format
is automatically converted to HTML, LATEX, PostScript and
PDF formats. The HTML version of the documentation is hy-
perlinked and is used as online help available from the Yacas
prompt.

1.8 Future plans

The long-term goal for Yacas is to become an industrial-
strength CAS and to remain a flexible research tool for easy

prototyping of various methods of symbolic calculations. Ya-
cas is meant to be a repository and a testbed for such algorithm
prototypes.

The plugin facility will be extended in the future, so that a
rich set of extra additional libraries (especially free software li-
braries), system-specific as well as mathematics-oriented, should
be loadable from the Yacas system. The issue of speed is also
continuously being addressed.

1.9 References

[ASU86] A. Aho, R. Sethi and J. Ullman, Compilers (Principles,
Techniques and Tools), Addison-Wesley, 1986.

[B86] I. Bratko, Prolog (Programming for Artificial Intelli-
gence), Addison-Wesley, 1986.

[BN98] F. Baader and T. Nipkow, Term rewriting and all
that, Cambridge University Press, 1998.

[C86] G. Cooperman, A semantic matcher for computer alge-
bra, in Proceedings of the symposium on symbolic and algebraic
computation (1986), Waterloo, Ontario, Canada (ACM Press,
NY).

[F90] R. Fateman, On the design and construction of algebraic
manipulation systems, also published as: ACM Proceedings of
the ISSAC-90, Tokyo, Japan.

[GG99] J. von zur Gathen and J. Gerhard, Modern Computer
Algebra, Cambridge University Press, 1999.

[K98] D. Knuth, The Art of Computer Programming (Volume
2, Seminumerical Algorithms), Addison-Wesley, 1998.

[TATA99] H. Comon, M. Dauchet, R. Gilleron, F. Jacque-
mard, D. Lugiez, S. Tison, and M. Tommasi, Tree Au-
tomata Techniques and Applications, 1999, online book:
http://www.grappa.univ-lille3.fr/tata

[W96] S. Wolfram, The Mathematica book, Wolfram Media,
Champain, 1996.

[WH89] P. Winston and B. Horn, LISP, Addison-Wesley,
1989.

7

Chapter 2

M. Wester’s CAS benchmark and Yacas

In his 1994 paper Review of CAS mathematical capabilities,
Michael Wester has put forward 123 problems that a reasonable
computer algebra system should be able to solve and tested the
then current versions of various commercial CAS on this list.

Below is the list of Wester’s problems with the correspond-
ing Yacas code. “OK” means a satisfactory solution, “BUG”
means that Yacas gives a wrong solution or breaks down, “NO”
means that the relevant functionality is not yet implemented.

Yacas version: 1.3.6

1. (OK) 50!

Verify(25!, 15511210043330985984000000);

Verify(50!, (26***50)*25!);

2. (OK) Factorize 50!

Verify(Factors(50!), {{2,47},{3,22},{5,12},

{7,8},{11,4},{13,3},{17,2},{19,2},{23,2},

{29,1},{31,1},{37,1},{41,1},{43,1},{47,1}});

3. (OK) 1
2

+ ...+ 1
10

= 4861
2520

Verify(Sum(n,2,10,1/n) , 4861/2520);

4. (OK) Evaluate eπ
√

163 to 50 decimal digits

Verify(N(1000000000000*(-262537412640768744 +

Exp(Pi*Sqrt(163))), 50)> -0.75, True);

5. (OK) Evaluate the Bessel function J2 numerically at z =
1 + ı.

NumericEqual(N(BesselJ(2, 1+I)),

0.4157988694e-1+I*0.2473976415,Builtin’Precision’Get());

6. (OK) Obtain period of decimal fraction 1/7=0.(142857).

Verify(Decimal(1/7), {0,{1,4,2,8,5,7}});

7. Continued fraction of 3.1415926535.

Verify([Local(p,r);p:=Builtin’Precision’Get();Builtin’Precision’Set(12);r:=ContFracList(3.1415926535, 6);Builtin’Precision’Set(p);r;],

{3,7,15,1,292,1});

8. (OK)
√

2
√

3 + 4 = 1 +
√

3.

Verify(RadSimp(Sqrt(2*Sqrt(3)+4)), 1+Sqrt(3));

9. (OK)

√
14 + 3

√
3 + 2

√
5− 12

√
3− 2

√
2 = 3 +

√
2.

Verify(RadSimp(Sqrt(14+3*Sqrt(3+2*Sqrt(5-12

*Sqrt(3-2*Sqrt(2)))))), 3+Sqrt(2));

10. (OK) 2∞− 3 =∞.

Verify(2*Infinity-3, Infinity);

11. (NO) Standard deviation of the sample (1, 2, 3, 4, 5).

12. (NO) Hypothesis testing with t-distribution.

13. (NO) Hypothesis testing with normal distribution (M.
Wester probably meant the χ2 distribution).

14. (OK) x2−4
x2+4x+4

= x−2
x+2

.

Verify(GcdReduce((x^2-4)/(x^2+4*x+4),x),

(x-2)/(x+2));

15. (NO) exp(x)−1

exp(x
2)+1

= exp
(
x
2

)
− 1.

16. (OK) Expand (1 + x)20, take derivative and factorize.

Factor(D(x) Expand((1+x)^20));

17. (BUG/NO) Factorize x100 − 1.

Factor(x^100-1);

(returns the same expression unfactorized)

18. (NO) Factorize x4−3x2 +1 in the field of rational numbers
extended by roots of x2 − x− 1.

19. (NO) Factorize x4 − 3x2 + 1 mod 5.

20. (BUG) Partial fraction decomposition of x2+2x+3
x3+4x2+5x+2

.

Apart((x^2+2*x+3)/(x^3+4*x^2+5*x+2), x);

(does not obtain full partial fraction representation for
higher-degree polynomials, e.g. p (x)/(x+ a)n)

21. (NO) Assuming x ≥ y, y ≥ z, z ≥ x, deduce x = z.

22. (NO) Assuming x > y, y > 0, deduce 2x2 > 2y2.

23. (NO) Solve the inequality |x− 1| > 2.

24. (NO) Solve the inequality (x− 1) ... (x− 5) < 0.

25. (NO) cos 3x
cos x

= (cosx)2−3 (sinx)2 or similar equivalent com-
bination.

26. (NO) cos 3x
cos x

= 2 cos 2x− 1.

27. (OK) Define rewrite rules to match cos 3x
cos x

= (cosx)2 −
3 (sinx)2.

Cos(3*_x)/Cos(_x) <-- Cos(x)^2-3*Sin(x)^2;

28. (OK)
√

997− 6
√

9973 = 0

Verify(RadSimp(Sqrt(997)-(997^3)^(1/6)), 0);

29. (OK)
√

99983− 6
√

999833 = 0

Verify(RadSimp(Sqrt(99983)-(99983^3)^(1/6))

, 0);

30. (OK)
(

3
√

2 + 3
√

4
)2 − 6

(
3
√

2 + 3
√

4
)
− 6 = 0

Verify(RadSimp((2^(1/3)+4^(1/3))^3-6*(2^(1/3)+

4^(1/3))-6), 0);

31. (NO) ln tan
(
x
2

+ π
4

)
− arcsinh tanx = 0

8

32. (NO) Numerically, the expression ln tan
(
x
2

+ π
4

)
−

arcsinh tanx = 0 and its derivative at x = 0 are zero.

Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x));

D(x)(Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x)));

33. (NO) ln 2
√
r+1√

4r+4
√
r+1

= 0.

34. (NO)
(
4r + 4

√
r + 1

) √
r

2
√

r+1
(
2
√
r + 1

)(2√r+1)−1

− 2
√
r −

1 = 0, assuming r > 0.

35. (OK) Obtain real and imaginary parts of ln (3 + 4ı).

Verify(

Hold({ {x}, {Re(x), Im(x)}}) @ Ln(3+4*I)

, {Ln(5),ArcTan(4/3)});

36. (BUG) Obtain real and imaginary parts of tan (x+ ıy).

Hold({ {x}, {Re(x), Im(x)}}) @ Tan(x+I*y);

37. (BUG) Simplify ln exp (z) to z for −π < Im (z) ≤ π.

Verify(Simplify(Ln(Exp(z))), z);

(no conditions on z are used)

38. (NO) Assuming Re (x) > 0, Re (y) > 0, deduce n
√
x n
√
y −

n
√
xy = 0.

39. (NO) Transform equations, x=2
2

+ (1 = 1)⇒ x
2

+ 1 = 2.

40. (BUG) Solve exp (x) = 1 and get all solutions.

Verify(Solve(Exp(x)==1,x), {x==0});

(get only one solution)

41. (BUG) Solve tanx = 1 and get all solutions.

Verify(Solve(Tan(x)==1,x), {x==Pi/4});

(get only one solution)

42. (OK) Solve a degenerate 3x3 linear system.

Verify(Simplify({x+y+z==6,2*x+y+2*z==10,x+3*y+z==10} Where Solve({x+y+z==6, 2*x+y+2*z==10,x+3*y+z==10}, {x,y,z})), {{0==0,0==0,0==0}});

(the new routine Solve cannot do this yet)

43. (OK) Invert a 2x2 symbolic matrix.

Verify(Simplify(Inverse({{a,b},{1,a*b}})),

{{a/(a^2-1), -1/(a^2-1)},

{-1/((a^2-1)*b), a/((a^2-1)*b)}});

44. (BUG) Compute the determinant of the 4x4 Vandermonde
matrix.

Factor(Determinant(VandermondeMatrix

({a,b,c,d})));

(this does not factor correctly)

45. (OK) Find eigenvalues of a 3x3 integer matrix.

Verify(EigenValues({{5,-3,-7},{-2,1,2},

{2,-3,-4}}) , {1,3,-2});

46. (OK) Verify some standard limits found by L’Hopital’s
rule:

Verify(Limit(x,Infinity) (1+1/x)^x, Exp(1));

Verify(Limit(x,0) (1-Cos(x))/x^2, 1/2);

47. (OK) Sign (x)

Verify(D(x) Abs(x), Sign(x));

48. (OK)
∫
|x| dx = |x| x

2

Verify(Simplify(Integrate(x) Abs(x)),

Abs(x)*x/2);

1. (OK) Compute derivative of |x|, piecewise defined.

Verify(D(x)if(x<0) (-x) else x,

Simplify(if(x<0) -1 else 1));

2. (OK) Integrate |x|, piecewise defined.

Verify(Simplify(Integrate(x)

if(x<0) (-x) else x),

Simplify(if(x<0) (-x^2/2) else x^2/2));

3. (OK) Taylor series of 1√
1− v2

c2

at v = 0.

S := Taylor(v,0,4) 1/Sqrt(1-v^2/c^2);

TestYacas(S, 1+v^2/(2*c^2)+3/8*v^4/c^4);

Note: The result of Taylor is not in convenient form but
is equivalent.

4. (OK) Compute the Taylor expansion of the inverse square
of the above.

TestYacas(Taylor(v,0,4) 1/S^2, 1-v^2/c^2);

Note: The result of Taylor is not in convenient form but
is equivalent.

5. (OK) (Taylor expansion of sinx)/(Taylor expansion of
cosx) = (Taylor expansion of tanx).

TestYacas(Taylor(x,0,5)(Taylor(x,0,5)Sin(x))/

(Taylor(x,0,5)Cos(x)), Taylor(x,0,5)Tan(x));

6. (BUG) Taylor expansion of (lnx)a exp (−bx) at x = 1.

//Taylor(x,1,3)(Ln(x))^a*Exp(-b*x);

(bugs in Deriv manipulation)

7. (BUG) Taylor expansion of ln sin x
x

at x = 0.

//Taylor(x,0,5) Ln(Sin(x)/x);

(never stops)

8. (NO) Compute n-th term of the Taylor series of ln sin x
x

at
x = 0.

9. (NO) Compute n-th term of the Taylor series of
exp (−x) sinx at x = 0.

10. (OK) Solve x = sin y + cos y for y as Taylor series in x at
x = 1.

TestYacas(InverseTaylor(y,0,4) Sin(y)+Cos(y),

(y-1)+(y-1)^2/2+2*(y-1)^3/3+(y-1)^4);

Note that InverseTaylor does not give the series in terms
of x but in terms of y which is semantically wrong. But
other CAS do the same.

11. (OK) Compute Legendre polynomials directly from Ro-
drigues’s formula, Pn = 1

(2n)!!

(
∂n

∂xn

(
x2 − 1

)n)
.

P(n,x) := Simplify(1/(2*n)!! *

Deriv(x,n) (x^2-1)^n);

TestYacas(P(4,x), (35*x^4)/8+(-15*x^2)/4+3/8);

12. (OK) Compute Legendre polynomials Pn recursively.

Verify(OrthoP(4,x)

, 3/8+((35*x^2)/8-15/4)*x^2);

13. (OK) Compute Legendre polynomial P4 at x = 1.

Verify(OrthoP(4,1), 1);

14. (OK) Define the polynomial p =
∑5

i=1
aix

i.

9

p:=Sum(i,1,5,a[i]*x^i);

Verify(p, a[1]*x+a[2]*x^2+a[3]*x^3

+a[4]*x^4+a[5]*x^5);

15. (OK) Convert the above to Horner’s form.

Verify(Horner(p, x), ((((a[5]*x+a[4])*x

+a[3])*x+a[2])*x+a[1])*x);

16. (NO) Convert the result of problem 127 to Fortran syntax.

CForm(Horner(p, x));

17. (OK) Verify that True ∧ False = False.

Verify(True And False, False);

18. (OK) Prove x Or Not x.

Verify(CanProve(x Or Not x), True);

19. (OK) Prove x ∨ y ∨ x ∧ y ⇒ x ∨ y.

Verify(CanProve(x Or y Or x And y => x Or y)

, True);

10

Chapter 3

On Yacas programming

3.1 Example: implementing a for-
mal grammar

To illustrate the use of rules, consider a theorem prover in a
simple formal grammar. (The example is the “ABIN system”
from the book: W. Robinson, Computers, minds and robots,
Temple University Press, 1992. Warning: the book is about
philosophy.)

Well-formed expressions consist of symbols A, B, I, N and are
either

1. B followed by zero or more of I’s, e.g. B , BIII ; or

2. N followed by a well-formed expression; or

3. A followed by two well-formed expressions.

This defines a certain set of well-formed expressions (state-
ments of the ABIN language); for example, NBII is a statement
of the language but AB is not. The truth/falsehood interpre-
tation of the ABIN language is the following. All well-formed
expressions starting with NB are interpreted as true statements
(they are “axioms” of the system). In addition, there is one
deduction rule allowing one to prove “theorems”:

• If x and y are well-formed, then from Nx follows NAxy.

Thus, NABIBI can be proved starting from the axiom NBI, but
NANBB cannot be proved. The task at hand is to decide whether
a given sequence of symbols is a provable statement of the ABIN
language.

(The idea behind this interpretation is to assume that all B,
BI etc. are some false statements that one could denote “B0”,
“B1” according to the number of “I” symbols; “N” is the logical
Not and ”A” is the logical And. Then the statement NABIB would
mean ”it is false that both B0 and B1 are true” and NANBB would
mean ”it is false that both B0 and negation of B0 are true”. The
NANBB statement is true in this interpretation but the deductive
system of ABIN is too weak to obtain its proof.)

Implementation using predicates

The easiest way to model the ABIN language in Yacas is
by using predicates. Our goal will be to define a predi-
cate IsProvable(x) that will return True when x is a prov-
able ABIN statement and False otherwise. We shall define
IsProvable(x) recursively through several auxiliary predicates.
Naturally, we would like to have a predicate to test well-
formedness: IsExpr(x). It is necessary also to have predicates
for B-expressions, N-expressions and A-expressions, as well as for
axioms and theorems. We might implement expressions by lists
of symbols, e.g. {"B", "I"} and begin to code by

IsExpr(x_IsList) <-- IsBExpr(x) Or

IsNExpr(x) Or IsAExpr(x);

IsProvable(x_IsList) <-- IsAxiom(x) Or

IsTheorem(x);

IsAxiom(x_IsList) <-- IsNExpr(x) And

IsBExpr(Tail(x));

The definitions of IsBExpr(x) and IsNExpr(x) are simple
recursion to express the rules 1 and 2 of the ABIN grammar.
Note the use of Take to create a copy of a list (we’d better not
modify the value of x in the body of the rule).

10 # IsBExpr({}) <-- False;

10 # IsBExpr({"B"}) <-- True;

20 # IsBExpr(x_IsList) <-- x[Length(x)]="I"

And IsBExpr(Take(x, {1, Length(x)-1}));

10 # IsNExpr({}) <-- False;

20 # IsNExpr(x_IsList) <-- x[1] = "N" And

IsExpr(Tail(x));

The predicate IsAExpr(x) is a little bit more complicated
because our rule 3 requires to find two well-formed expressions
that follow A. Also, for proving theorems we need to be able
to extract the first of these expressions. With this in mind,
we define another auxiliary function, FindTwoExprs(x), that
returns the results of search for two well-formed expressions in
the list x. The return value of this function will be a pair such
as {True, 3} to indicate that two well-formed expressions were
found, the first expression being of length 3. We shall use a For

loop for this function:

FindTwoExprs(x_IsList) <-- [

Local(iter, result);

For([iter:=1; result:=False;],

iter < Length(x) And Not result,

iter:=iter+1)

[

result := IsExpr(Take(x, iter))

And IsExpr(Take(x, {iter+1,

Length(x)}));

];

{result, iter-1};

];

Now we can define the remaining predicates:

10 # IsAExpr(x_IsList)_(Length(x) <= 1)

<-- False;

20 # IsAExpr(x_IsList) <-- x[1] = "A" And

FindTwoExprs(Tail(x))[1];

IsTheorem(x_IsList) <-- If(IsNExpr(x) And

IsAExpr(Tail(x)) And IsProvable(

11

Concat({"N"}, Take(Tail(Tail(x)),

FindTwoExprs(Tail(Tail(x)))[2])));

The ABIN language is now complete. Let us try some simple
examples:

In> IsExpr({"A","B"});

Out> False;

In> IsExpr({"N","B","I"});

Out> True;

In> IsAxiom({"N","B","I"});

Out> True;

In> IsTheorem({"N","B","I"});

Out> False;

In> IsProvable({"N","B","I"});

Out> True;

In> IsProvable({"N","A","B","I","B"});

Out> True;

It is somewhat inconvenient to type long lists of characters.
So we can create an interface function to convert atomic ar-
guments to lists of characters, e.g. AtomToCharList(BII) will
return {"B","I","I"} (provided that the symbol BII has not
been given a definition). Then we define a function ABIN(x) to
replace IsProvable.

AtomToCharList(x_IsAtom) <-- [

Local(index, result);

For([index:=Length(String(x));

result:={};],

index > 0, index:=index-1)

Push(result, StringMid’Get(index, 1,

String(x)));

result;

];

Holdarg(AtomToCharList, 1);

ABIN(x) := IsProvable(AtomToCharList(x));

In> AtomToCharList(NBII);

Out> {"N", "B","I","I"};

In> ABIN(NANBB);

Out> False;

It is easy to modify the predicates IsTheorem() and
IsAxiom() so that they print the sequence of intermediate the-
orems and axioms used for deriving a particular theorem. The
final version of the code is in the file examples/ABIN.ys. Now
we can try to check a ”complicated” theorem and see an outline
of its proof:

In> ABIN(NAAABIIBIBNB);

Axiom {"NBII"}

Theorem NABIIBI derived

Theorem NAABIIBIB derived

Theorem NAAABIIBIBNB derived

Out> True;

3.2 Example: Using rules with spe-
cial syntax operators creatively

Any Yacas function can be declared to have special syntax : in
other words, it can be made into a prefix, infix, postfix, or bod-
ied operator. In this section we shall see how prefix, infix, and
postfix operators understood by Yacas can be adapted to a prob-
lem that seems to be far removed from algebra. Nevertheless it
is instructive to understand how rewriting rules are used with
special syntax operators.

Suppose we want to build a system that understands a simple
set of English sentences and will be able to answer questions. For
example, we would like to say “Tom had an apple and Jane gave
3 apples to Tom”; the system should understand that Tom has
4 apples now. In the usual LISP-based treatments of artificial
intelligence, this problem would be illustrated with a cumber-
some list syntax such as (had (Tom apple 1)) but we would
like to use the power of the Yacas syntax and use plain English.

We shall create a set of rules that will “simplify” sentences to
atoms such as True or False. As a side-effect, these ”simplifi-
cations” will maintain a ”knowledgebase” of information about
all existing persons and objects.

The talking machine

The full source of this example is in the file
examples/wordproblems.ys. In the next subsection we
shall discuss the basic issues of the implementation. For now,
here is an example session that shows what functionality we
have in mind:

Unix> yacas

True;

Numeric mode: "Internal"

To exit Yacas, enter Exit(); or quit or Ctrl-c.

Type ’restart’ to restart Yacas.

To see example commands, keep typing Example();

In> Load("wordproblems.ys")

Out> True;

In> Jitse and Ayal are persons;

OK, Jitse is a person.

OK, Ayal is a person.

Out> {True,True};

In> apple is an object;

OK, apple is an object.

Out> True;

In> there are many apples and pears;

Note: we already know that apple is an object

OK, we assume that the plural of " apple " is

" apples ".

OK, pear is an object.

OK, we assume that the plural of " pear " is

" pears ".

Out> {True,True};

In> Serge had an apple;

OK, Serge is a person.

OK, Serge has 1 apples now.

Out> True;

In> Jitse had (10!) pears;

OK, Jitse has 3628800 pears now.

Out> True;

In> Ayal had (2+3) apples and Serge had \

2 pears;

OK, Ayal has 5 apples now.

OK, Serge has 2 pears now.

Out> {True,True};

In> Serge ate the apple;

OK, Serge has no apples now.

Out> True;

In> Ayal ate a pear;// this should fail

Error: Ayal does not have enough

pears at this time.

Out> False;

In> Ayal gave an apple to Serge and \

Serge gave a pear to Ayal;

OK, Ayal has 4 apples now.

12

OK, Serge has 1 apples now.

OK, Serge has 1 pears now.

OK, Ayal has 1 pears now.

Out> {True,True};

In> Ayal ate a pear;

OK, Ayal has no pears now.

Out> True;

In> soup is an object and Ayal had \

some soup;

OK, soup is an object.

OK, Ayal has some soup now.

Out> {True,True};

In> Ayal gave soup to Serge and Serge \

ate the soup;

OK, Ayal has no soup now.

OK, Serge has some soup now.

OK, Serge has no soup now.

Out> {True,True};

In> Serge has soup

Out> no;

In> Serge has apples

Out> 1;

In> Ayal has apples

Out> 4;

In> Serge has some soup

Out> False;

In> Serge has some apples

Out> True;

In> Ayal has some pears

Out> False;

In> Knowledge();

OK, this is what we know:

Persons: Jitse, Ayal, Serge

Object names: soup, pear, apple

Countable objects: pears, apples

Jitse has:

3628800 pears

Ayal has:

4 apples

no pears

no soup

Serge has:

1 apples

1 pears

no soup

Out> True;

In> software is an object

OK, software is an object.

Out> True;

In> Ayal made some software

OK, Ayal has some software now.

Out> True;

In> Ayal gave some software to everyone

OK, everyone is a person.

OK, Ayal still has some software

OK, everyone has some software now.

Out> True;

In> Ayal gave some software to Serge

OK, Ayal still has some software

OK, Serge has some software now.

Out> True;

In> Serge ate the software

OK, Serge has no software now.

Out> True;

The string “OK” is printed when there is no error, “Note”
when there is a warning, and “Error” on any inconsistencies in
the described events. The special function Knowledge() prints
everything the system currently knows.

Now we shall see how this system can be implemented in
Yacas with very little difficulty.

Parsing sentences

A sentence such as “Mary had a lamb” should be parsed as a
valid Yacas expression. Since this sentence contains more than
one atom, it should be parsed as a function invocation, or else
Yacas will simply give a syntax error when we type it in.

It is logical to declare “had” as an infix operator and ”a” as a
prefix operator quantifying lamb. In other words, ”Mary had a

lamb” should be parsed into had(Mary, a(lamb)). This is how
we can do it:

In> [Infix("had", 20); Prefix("a", 10);]

Out> True;

In> FullForm(Mary had a lamb)

(had Mary (a lamb))

Out> Mary had a lamb;

Now this sentence is parsed as a valid Yacas expression (al-
though we have not yet defined any rules for the functions “a”
and ”had”).

Note that we declared the precedence of the prefix operator
“a” to be 10. We have in mind declaring another infix operator
“and” and we would like quantifiers such as “a”, “an”, “the” to
bind more tightly than other words.

Clearly, we need to plan the structure of all admissible sen-
tences and declare all necessary auxiliary words as prefix, infix,
or postfix operators. Here are the patterns for our admissible
sentences:

“X is a person” – this declares a person. Parsed: is(X,

a(person))

“X and Y are persons” – shorthand for the above. Parsed:
are(and(X, Y), persons). ”person” and ”persons” are un-
evaluated atoms.

“A is an object” – this tells the system that ”A” can be
manipulated. Parsed: is(A, an(object))

“there are many As” – this tells the system that ”A” can be
counted (by default, objects are not considered countable enti-
ties, e.g. ”milk” or ”soup”). Parsed: are(there, many(As)).
Here ”As” is a single atom which will have to be stripped of the
ending ”s” to obtain its singular form.

“X ate N1 As”, for example, Tom ate 3 apples – parsed
as ate(Tom, apples(3)). Since we cannot make the number 3

into an infix operator, we have to make apples into a postfix
operator that will act on 3.

“X gave N As to Y” – Here ”N” is a number and ”A” is the
name of an object. Parsed as: gave(X, to(As(N), Y)). So to

and gave are infix operators and to binds tighter than gave.
Sentences can be joined by “and”, for example: “Tom gave

Jane an apple and Jane ate 3 pears”. This will be parsed
as the infix operator ”and” acting on both sentences which are
parsed as above. So we need to make ”and” of higher precedence
than other operators, or else it would bind (apple and Jane)

together.
“X made some A” – note that if ”A” is not countable, we

cannot put a number so we need to write some which is again a
prefix operator. made is an infix operator.

“X ate some A” – the interpretation is that some A is still
left after this, as opposed to ”X ate the A” or ”X ate A”.

“X gave some A to Y” – similarly, X still has some A left
after this.

13

After each sentence, the system should know who has what
at that time. Each sentence is parsed separately and should be
completely interpreted, or “simplified”.

All knowledge is maintained in the variable Knowledge which
is an associative list with three entries:

Knowledge := {

{"objects", {} },

{"countable objects", {} },

{"persons", {} }

};

The values under the keys “objects” and “countable objects”
are lists of names of declared objects. The values of the “per-
sons” key is a doubly nested associative list that specifies which
objects each person has and how many. So, for example,
Knowledge[”persons”][”Tom”][”apples”] should give the number
of apples Tom has now, or the atom Empty if he has none.

Declaring objects

Declaring persons is easy: we just create a new entry in the
“persons” list. This can be done by an auxiliary routine
DeclarePerson(). Note that after we have declared the words
”is”, ”a” to be operators, we can just write the rule using them:

Infix("is", 20);

Prefix("a", 10);

_x is a person <-- DeclarePerson(x);

Here “person” will be left as an unevaluated atom and we shall
never have any rules to replace it. Some other words such as “ob-
ject”, “objects” or “there” will also remain unevaluated atoms.

The operator “and” will group its operands into a list:

Infix("and", 30);

10 # x_IsList and _y <-- Concat(x, {y});

15 # _x and _y <-- Concat({x}, {y});

So expressions such as “Lisa and Anna and Maria” will be au-
tomatically transformed into {Lisa, Anna, Maria}. We shall
adapt our rules to operate on lists of operands as well as on sim-
ple operands and that will automatically take care of sentences
such as “there are many apples and ideas”.

10 # there are many xs_IsList <--

MapSingle("DeclareCountable", xs);

20 # there are many _xs <-- DeclareCountable(xs);

However, in the present system we cannot simultaneously
parse “there are many apples and ideas” and “Isaac had an
apple and an idea” because we have chosen had to bind tighter
than and. We could in principle choose another set of prece-
dences for these operators; this would allow some new sentences
but at the same time disallow some sentences that are admis-
sible with the current choice. Our purpose, however, is not to
build a comprehensive system for parsing English sentences, but
to illustrate the usage of syntax in Yacas.

Declaring objects is a little more tricky (the function
DeclareCountable). For each countable object (introduced by
the phrase “there are many ...s”) we need to introduce a new
postfix operator with a given name. This postfix operator will
have to operate on a preceding number, so that a sentence such
as “Mary had 3 lambs” will parse correctly.

If x were an unevaluated atom such as ”lambs” which is
passed to a function, how can we declare lambs to be a post-
fix operator within that function? The string representa-
tion of the new operator is String(x). But we cannot call
Postfix(String(x)) because Postfix() does not evaluate its

arguments (as of Yacas 1.0.49). Instead, we use the func-
tion UnList to build the expression Postfix(String(x)) with
String(x) evaluated from a list {Postfix, String(x)}, and
we use the function Eval() to evaluate the resulting expression
(which would actually call Postfix()):

Eval(UnList({Postfix, String(x)}));

We also need to declare a rulebase for the operator named
String(x). We use MacroRuleBase for this:

MacroRuleBase(String(x), {n});

Finally, we would need to define a rule for “had” which can
match expressions such as

_Person had n_IsNumber _Objects

where Objects would be a pattern matcher for an unknown
postfix operator such as lambs in our previous example. But
we discover that it is impossible to write rules that match an
unknown postfix operator. The syntax parser of Yacas cannot
do this for us; so we should find a workaround. Let us define a
rule for each object operator that will transform an expression
such as 5 lambs into a list {lambs, 5}. In this list, ”lambs” will
just remain an unevaluated atom.

Incidentally, the parser of Yacas does not allow to keep un-
evaluated atoms that are at the same time declared as prefix
operators but it is okay to have infix or postfix operators.

A rule that we need for an operator named String(x) can be
defined using MacroRule:

MacroRule(String(x), 1, 1, True) {x, n};

Now, after we declare “lambs” as an operator, the routine will
define these rules, and anything on which ”lambs” acts will be
transformed into a list.

In> 5 lambs;

Out> {lambs, 5};

In> grilled lambs

Out> {lambs, grilled};

But what about the expression “many lambs”? In it, many is a
prefix operator and lambs is a postfix operator. It turns out that
for Yacas it is the prefix operator that is parsed first (and re-
member, we cannot have unevaluated atoms with the same name
as a prefix operator!) so ”many lambs” will be transformed into
many(lambs) and not into an illegal expression {lambs, many}.

Implementing semantics

After implementing all the syntax, the semantics of these sen-
tences is very easy to transform into rules. All sentences are
either about how something exists, or about someone “having”,
“making”, “eating”, or “giving” certain objects. With the rules
described so far, a complicated sentence such as

Ayal gave soup to Serge and Serge ate the soup

will be already parsed into function calls

{gave(Ayal, to(soup, Serge)), ate(Serge,

{soup, 1}}

So now we only need to make sure that all this information is
correctly entered into the knowledgebase and any inconsistencies
(e.g. eating something you do not have) are flagged.

Here is the simplest rule: “giving” is implemented as a se-
quence of “eating” and “making”.

10 # _x gave _obj to _y <-- [

x ate obj;

y made obj;

];

14

One more subtlety connected with the notion of “countable”
vs. “uncountable” objects is that there are two different actions
one can perform on an “uncountable” object such as “soup”:
one can eat (or give away) all of it or only some of it. This is
implemented using the keyword “some” which is a prefix oper-
ator that turns its argument into a list,

some _obj <-- {obj, True};

This list looks like the result of another quantifier, e.g.

the _x <-- {x, 1};

but in fact the special value True in it is used in the definition
of ”ate” so that when you ”eat” ”some” of the object, you still
have ”some” of it left.

To implement this, we have made a special rule for the pattern

_x had {obj, True} <-- ...

separately from the general rule

_x had {obj, n_IsNumber} <-- ...

and its shorthand

(_x had _obj)_(Not IsList(obj)) <--

x had {obj, 1};

Admittedly, the module wordproblems.ys has not very much
practical use but it is fun to play with and it illustrates the
power of syntactic constructions from an unexpected angle.

15

Chapter 4

Why −x−1 and −1
x are not the same in

Yacas

Wouldn’t it be wonderful if we had a program that could do
all the mathematical problems for us we could ever need? Need
to solve a set of equations? Just call Solve with the appropriate
arguments. Want to simplify an expression? Just call Simplify
and you will always get the form you would like to see. A pro-
gram, simply, that could replace any mathematician. An expert
system, the domain of expertise being mathematics. Wouldn’t
that be great?

The answer to the above is, at least according to the author,
a resounding no. It is doubtful such a program will ever exist,
but it is not even sure that such a program would be desirable.

Humans have a long history of making tools to make their
lives easier. One important property of a tool is that it is clear
conceptually to the user of that tool what that tool does. A tool
should not be clever. The user of the tool can be clever about
using the tool, or combining it with other tools. A ’clever’ tool
often results in a tool that is not useful. It is hard to understand
what a clever tool does, or why it does what it does. In short:
its behavior will be unpredictable.

This is a passionate plea against generic commands like
Simplify and Solve.

Consider this bit of interaction in Yacas:

In> a:= -x^(-1)

Out> -x^(-1);

In> b:= -1/x

Out> (-1)/x;

In> a = b

Out> False;

Now, that can not be right, can it? Clearly, these are the
same? No, they are not. They have a slightly different form, and
are thus represented differently internally. the = sign compares
the internal representation of two expressions , so a = b returns
False because the internal representations of the expressions a

and b are bound to are different. Note that this is behaviour that
is simple to explain. The = operator is a ’tool’, it is simple, and
does one thing but does it well. It is easy to use, an important
property of a tool.

To drive home this point further, suppose we did modify the
= operator to detect that a and b are indeed equal. Great!
Wonderful! a=b now returns True. But consider

In> c:=1+r+r^2

Out> r+r^2+1;

In> d:=(1-r^3)/(1-r)

Out> (1-r^3)/(1-r);

In> c=d

Out> False;

c and d are equal for all values of r where r != 1, but there
a limit can be taken:

In> Limit(r,1)d

Out> 3;

In> Limit(r,1)c

Out> 3;

Now, we have to modify the = tool to also detect that these
are the same. Actually, this will have to be done for all known
identities! Or we shall have to explain for which expressions it
can determine equality. This will be a complex story, it will be
hard to explain. It will be a complex tool to use. And, more
practically, it will be a slow tool.

So, how do we go about verifying that a and b are the same?
Or that c and d are the same?

The solution lies in devising new tools.

4.1 Canonical and normal repre-
sentations

A canonical representation for a group of expressions is a repre-
sentation for each object in that group such that if two elements
of the group are the same, they also have the same (internal)
representation. Thus, when expressions are brought to their
canonical representations, the = tool can be used to verify that
they are the same.

A representation is called a normal representation if zero only
has one representation. Thus nf(a-b)=0 should be something
that should return True if a and b are the same mathematically.

Consider a normal form defined on rational functions:

In> MM(a)

Out> MultiNomial({x},{{-1,-1}});

In> MM(b)

Out> MultiNomial({x},{{0,-1}})/

MultiNomial({x},{{1,1}});

However:

In> MM(a-b)

Out> MultiNomial({x},{{0,0}})/

MultiNomial({x},{{1,1}});

In> NormalForm(%)

Out> 0;

So here we have found a combination of tools that together
allow us to decide that the a and b defined in the beginning of
this section are the same: convert a-b to a normal form of a-b,
and verify with the = tool that they are the same:

16

In> NormalForm(MM(a-b)) = 0

Out> True;

Now consider the c and d defined above. c and d are both
functions of r only, c = c (r) and d = d (r). Now, let us define a
function f (r) = c (r)− d (r):

In> f(r):=Eval(c-d)

Out> True;

In> f(r)

Out> r+r^2+1-(1-r^3)/(1-r);

It is not quite clear yet that this is zero. But we can decide
that this is zero (and thus c(r)=d(r)) by first noting that f (r)
is zero for some r, and then that the first derivative of f (r) with
respect to r is zero, independent of r:

In> f(0)

Out> 0;

In> D(r)f(r)

Out> 2*r+1-(-((1-r)*3*r^2+r^3-1))/(1-r)^2;

In> NormalForm(MM(%))

Out> 0;

So here we have avoided bringing c and d to canonical forms,
by for example first discovering that c is a geometric series, and
gone straight to detecting that c-d is in fact zero, and thus
c (r) = d (r).

Here again we have combined tools that are simple, do one
thing but do it well, and for which it is easy to understand for
human beings what they do.

4.2 But how can we then build a
powerful CAS?

A new problem is introduced when algorithms are written down
that require more powerful comparison tools, tools that are more
sophisticated than the = tool for detecting that two expressions
are indeed the same. The solution to this is to write the algo-
rithm, but leave the actual comparison tool to be used by the
algorithm configurable. This makes algorithms more flexible:
the comparison operator can be passed in as an argument, or
the algorithm can perhaps detect to which group its arguments
belong, and use the appropriate tool to detect equality between
two expressions.

4.3 Conclusion

A CAS (or any other system built to be used by humans for
that matter) should be built up from small, well understood
building blocks. Yacas contains hundreds of functions that can
be combined into more powerful algorithms. These tools are
documented in the documentation that comes with Yacas. Ya-
cas solves the problem in that way. Let the user be smart, and
choose the tools he needs based on understanding what the tools
do. Large, complicated, cumbersome calculations can be done
that way by just using well understood tools and combining
them appropriately.

17

Chapter 5

For Yacas developers

5.1 A crash course in Yacas main-
tenance for developers

This document intends to give a concise description of the way
Yacas is maintained. There are a few parts to maintenance to
take into account:

• The autoconf/automake part – makefile maintenance over
various systems.

• The cvs system – enabling developers to work together.

• The back up repository – storage of tarballs with versions
of Yacas. This can be found at the following address:

http://www.xs4all.nl/~apinkus/backups/

The autoconf/automake system

The short story is as follows. You probably do not need to
bother about this unless you introduce a new file. However,
if you add a new file, it probably should be added to the
Makefile.am file in the same directory. In many cases, it
should be clear from the Makefile.am file where your new file
should be added. For instance, new Yacas script files go into
the huge list in scripts/Makefile.am that is assigned to the
SCRIPTFILES variable. Similarly, test scripts should go in the
list in tests/Makefile.am that is assigned to the TESTFILES

variable. Note that you should probably also run the cvs add

command, as explained in the section on CVS below. If you re-
move a file, then you should go through the inverse procedure.

The addition of new files to the Makefile.am ensures that it
will be added to the tarball yacas-*.tar.gz which is uploaded
to the backup repository. This has the nice side effect that
you can have local files which don’t automatically get added to
the distribution (by not adding them to the Makefile.am file).
Additionally, files which are not listed in Makefile.am may not
be built and/or installed automatically. To make sure that the
tar.gz distribution is complete, you can run the command

make distcheck

This may take a little while, as it needs to rebuild and test the
whole system from the tar.gz tarball.

If you want to do more complicated things (like adding files
which are not Yacas script or test files, or files which should be
compiled or installed only conditionally), or if you are simply
curious, you can read more in the chapter entitled “The Yacas
build system”.

Maintaining Yacas through a cvs repository

CVS provides an efficient way for developers to work together,
automatically merging changes various developers make, and at
the same tile is a back up system (uploading your changes to

another computer from which you can easily obtain it at a later
time). After a little effort setting it up it becomes very easy
to use. This section describes the few commands needed for
keeping your version and the version in the Yacas repository up
to date.

How does cvs work?

CVS has a copy of the files in the repository somewhere in a di-
rectory on some system, possibly your computer. Then there is
such a thing as a cvs server which you can talk to to synchronize
your version of the source code with the version on the server.

CVS uses a diff-like scheme for merging differences: it looks
at two text files, determines the different lines, and merges ac-
cordingly. It discovers the changes you made by looking at the
version you checked out last and the version you have now, to
discover which lines changed (it maintains an automatic version
number for each file).

If the version of a file on your system and the version in the
cvs repository has a line that has been changed by both you and
some one else, the cvs repository will obviously not know what
to do with that, and it will signal a ’collision’ which you will
have to solve by hand (don’t worry, this rarely happens). More
on that later.

In commands to be described in this document are in short:

• cvs checkout will get you an initial version. You only need
to call this once.

• cvs update will merge the two versions and put it on your
computer, so you have the latest version.

• cvs commit will merge the two versions and put it in the
cvs repository.

• cvs add to add a file or directory.

• cvs remove to remove a file.

Checking out an initial version of Yacas

There are two ways to check out a version of Yacas: as anony-
mous user and as maintainer. Anonymous users don’t need to
log in, but also have no right to commit changes. Maintainers
first need to get an account (at sourceforge), and their account
needs to be enabled so they are allowed by the maintainer to
make changes. A maintainer needs to log in with every com-
mand. To be able to log in, you need ssh1 installed (ssh2 will not
work). You can find this at http://www.ssh.org/download.html.

To check out Yacas as anonymous user, type:

cvs -d:pserver:anonymous@yacas.cvs.

sourceforge.net:/cvsroot/yacas login

cvs -z3 -d:pserver:anonymous@yacas.cvs.

sourceforge.net:/cvsroot/yacas co yacas

18

To check out as a maintainer, type:

export CVS_RSH=ssh1

This will tell CVS to use ssh1 for communication. Then, in
order to download the yacas source tree, type

cvs -d:ext:loginname@yacas.cvs.sourceforge.

net:/cvsroot/yacas co yacas

where loginname is your name on the sourceforge system. This
creates a directory yacas/ with the full most recent distribution.
You need to enter your password there, but other than that,
that’s it!

Those lines typed above are long and obscure, but it is also
the last time you need to type them. From now on, if you want
to do anything with cvs, just go into the yacas/ directory you
just checked out, and type the cvs command without the -d:...
flag. This flag just tells cvs where to find the repository. But
future cvs commands will know where to find them, which is
why you don’t need that flag.

Use case scenario 1 : getting the latest ver-
sion of Yacas

You haven’t looked at Yacas for a while (shame on you!) and
want to check out the latest version. Just type

cvs update -d

on the command line in the yacas directory, and that should
essentially download the latest version for you in that directory
(just the changes). The -d option here states that you are also
interested in new directories that were added to the repository.
Oddly enough, cvs will only get you changed and added files,
not added directories, by default.

A command

cvs -q update -d

will print messages only about changed files.

Use case scenario 2 : you made changes to
Yacas

You got the latest version, but saw this huge, glaring omission
in Yacas, and start hacking away to add it yourself. After a
while, after playing with the code you wrote, and if you think
you are finished with it, you decide you like to add it to the cvs
repository.

First, you should test the new Yacas system:

make test

If there are any failed tests, you need to fix them.

Now you can start entering your changes to the CVS. If you
created some new files, you need to tell CVS to add them to the
source tree:

cvs add [list of file names of ascii text files]

This adds ascii text files. If you added binary files (GIF im-
ages in the documentation directory, or something like that),
you can add it to the CVS with

cvs add -kb [list of file names of binary files]

Note that, when adding files to the CVS, you should normally
also add them to the Yacas tar.gz distribution. This is done
by adding the file name to the EXTRA DIST variable in the file
Makefile.am in the directory where you were adding the file.

In case files need to be removed, there are two options:

• The file is still on your drive: call cvs remove -f

[filename] to remove the file from both your computer
and the cvs repository.

• You already removed the file from your system: call cvs
remove [filename]

There seems to be no easy way to rename or move files; you
would have to remove them at their old location and add them
at a new location.

Now, when finished with that, you might want to ’commit’
all changes with

cvs commit

If the commit succeeds, an email is sent out to the maintain-
ers, who can then scan the diff files for changes, to see if they
agree with the changes, and perhaps fix mistakes made (if any).

If there is a collision, the commit fails (it will tell you so).
This might happen because someone else also edited the same
place in a file and their changes cannot be automatically merged
with yours. In case of a collision, you need to invoke cvs update

twice. The cvs update outputs a list of file names with a char-
acter in front of them. The important ones are the files with a
’C’ before them. They have a collision. You can go into the file,
and see the collision, which the cvs system conveniently marks
as:

<<<<<<

old version

===========

new version

>>>>>>

You can edit the file by merging the two versions by hand.
This happens very rarely, but it can happen. Use cvs commit

afterwards to commit.
The commit and update commands can be performed in spe-

cific directories, and on specific files, if necessary, by stating
them on the command line. Or you can go into a sub directory
and do a cvs commit or cvs update there, if you are confident
that is the only place that changed or whose changes you are
interested in.

That is basically it, a quick crash course cvs. It is actually
very convenient in that usually all that is needed is a cvs commit

to fix small bugs. You type that in, and your version gets merged
with the changes others made, and they get your changes, and
you backed up your changes at the same time (all with that
little command!).

You can find more information about cvs at
http://cvsbook.red-bean.com/.

5.2 Preparing and maintaining Ya-
cas documentation

Introduction

Yacas documentation in HTML and PS/PDF formats is gener-
ated by Yacas scripts from Yacas source files. Prior to ver-
sion 1.0.48, all documentation had to be written directly in
the Yacas language. However, it was very cumbersome to
write those source files in the Yacas language. The scripts
txt2yacasdoc.pl, book2TeX.sh, book2ys.sh, ytxt2tex were
created to help maintain the documentation in an easy-to-read
form.

The “source” form of all documentation is maintained in a
special plain text format. The format is such that it is clearly

19

readable without any processing and is easy to edit. To compile
the documents, the system processes the plain text docs with
a script to prepare Yacas-language files and then runs other
scripts to produce the final documentation in HTML and other
formats.

The source text must be formatted in a certain fashion to de-
limit sections, code examples, and so on, but the format is easy
enough to enter in a plain text editor. Text is marked up mostly
by TAB characters, spaces, and asterisks “*” at the beginning of
a line. The format is easy enough so that, for example, the text
of the GNU GPL (the file COPYING) can be used as a documen-
tation source file without changes. The script txt2yacasdoc.pl
converts this markup into Yacas code for further processing.

Organization of the Yacas documentation

All documentation source files are kept in the subdirectory
manmake. During compilation, Yacas language files as well as
HTML, LATEX and PS/PDF files are automatically generated
in the manmake subdirectory. Contributors should only need to
edit *.txt files in manmake.

Currently, the Yacas documentation consists of four “core”
books (the introductory tutorial, the programming tutorial, the
user’s reference manual, and the programmer’s reference man-
ual), and three “extra” books (algorithms, Lisp programming,
essays). 1

All Yacas documentation books are distributed under the
GNU Free Documentation License (FDL). If you add a new doc-
umentation book to Yacas, please include the file FDL.chapt.

The documentation books are meant to be stand-alone texts,
except the two “reference manual” books which are meant to be
used together because they share a common hyperlinked table
of contents.

Stand-alone books are free-form, but reference books must be
written with a certain template that allows online hyperlinking.
The file manmake/dummies is an example template for a reference
manual section.

Books are divided into “chapters”, “sections” and “subsec-
tions”. The reference manuals contain descriptions of Yacas
commands and functions, and each function is given in a sep-
arate (unnumbered) section which is marked by a special *CMD
label (see below).

At the beginning of each book there must be a book title and
a short book description (labeled *BLURB). The short description
appears in the printed version as the subtitle on the title page.
It also goes into the HTML top-level book index as the book
description.

At the beginning of each chapter there may be a “chapter
introduction” labeled *INTRO which is also a short description
of the contents of that chapter. It may be one paragraph only.
The “chapter intro” feature is only used in the HTML reference
manual because it is the text that appears at the very top of a
reference manual section. As you can see in the HTML version
of reference docs, each chapter contains a list of all functions
described in it. This list goes right after the first paragraph of
“chapter intro”. In the printed (PS/PDF) documentation, the
*INTRO label is ignored and the ”chapter intro” paragraph is
shown exactly like any other text paragraph.

Each printed book contains a table of contents at the begin-
ning and an index at the end. The index should help a reader to
quickly find a particular concept. For example, all documented

1There is also a documentation book describing the Emacs in-
terface to Yacas (the ”Yacas Notebook” mode). This book is not
available as online help but is installed separately in the TeXinfo or
PostScript formats.

Yacas commands are automatically entered into the index in the
reference manual. Additional index entries should be inserted
by hand using the *A label (see below).

Translating the documentation

The Yacas system is under active development and its docu-
mentation is constantly updated. An effort to translate the Ya-
cas documentation from English into other languages has been
started.

Translators should try to prepare translated documentation
in the same plain text format as the original documentation.
Any problems with conversion to HTML and PS/PDF formats
should be easy to solve (at least for European languages).

The most important documentation books to translate are
the reference manual and the tutorials. There is substantial
documentation aimed at developers, for instance the algorithms
book or the essays book. It is probably not as important to
translate such books, since Yacas developers have to speak En-
glish to communicate.

Formatting of source text files

Formatting of source text files uses TAB symbols; if your editor
does not support them and converts them to spaces, you should
convert the results back to contain real TAB symbols using the
standard Unix unexpand utility or a custom perl script.

You may want to examine the source of this file (manmake/
YacasDocs.chapt.txt) to see how various features of the
markup are used. Currently the following markup is imple-
mented:

• Paragraphs are separated by blank lines (lines consisting
of space characters or empty). Several blank lines next to
each other are equivalent to one. However, TAB-indented
blank lines inside a code example (see below) do not create
another paragraph.

• Book heading is quadruple TAB indented. Chapter head-
ing is triple TAB indented. Section heading is double TAB
indented. Subsection heading is indented by a TAB and
4 spaces. Headings must be within one line (but that line
can be as long as needed).

• Sample code is single TAB indented, for example:

In> 1+2;

Out> 3;

Note that empty lines in a single sample code block must
be also TAB indented or else the sample code block will be
split into several sample code paragraphs. A sample code
block may or may not be separated from the text that
follows it by an empty line. If the code block is not sepa-
rated by an empty line, then the text following it will not
be made into a separate paragraph (this currently affects
paragraph indentation only in PS/PDF docs).

• If a section or chapter heading immediately follows a sam-
ple code block (i.e. when it is the last code sample in
the previous section), they must be separated from the
headings by an empty (unindented) line. The reason for
this is that the script will assume that everything which is
at least single-TAB indented (up to a separation between
paragraphs) belongs to one sample code block. This makes
it easier to enter multiply indented sample code: a double-
TAB indentation inside a sample code block will not start
a new section. For example:

20

While(x<0) [

x:=x+1;

Write(x);

];

• Ordinary text must not be indented at all. Line length is
arbitrary and linebreaks inside a paragraph are of no sig-
nificance to the resulting documentation. The first symbol
on a line should not be an asterisk (*) because it is reserved
for markup purposes. In most cases it is okay to have an
asterisk in the first position, though, as long as it does not
conflict with any markup labels (see below). All markup
labels start with an asterisk “*” in the first position on
a line, followed by an uppercase keyword, e.g. *CMD or
*INCLUDE. Some markup labels have arguments that follow
them, and some take an entire following paragraph as an
argument and must be terminated by a blank line.

• Itemized text is marked by ”*” in the first position, fol-
lowed by TAB. For example:

* Item

* Another item

This will produce:

• Item

• Another item

• Enumerated text is marked by ”*” followed by TAB, num-
ber and period. The number used in the source text is
irrelevant because the enumerated environment of the final
document will introduce its own counter. For example:

* 0. First item

* 0. Second item

This will produce:

1. First item

2. Second item

Note that the text of an item continues until the next itemized
line is given or until end of paragraph (does not have to be all
in one line).

Nesting of enumerated or itemized environments is not sup-
ported, except for fringe cases of nesting just one itemized list
at the very end of an enumerated list or vice versa.

The enumerated environment is currently only implemented
in LATEX docs; HTML docs render them as itemized.

• Emphasized text (italics) should be surrounded by <i>

</i>. Note that the whole emphasized fragment of text
must be located within a single line, or else it will not be
emphasized.

• Typewriter font text is surrounded by braces {}. The
typewriter font fragment must be within a single line and
may contain no more than four nested sets of {} inside.
This is hopefully enough for our documentation. A limita-
tion of this markup is that there is no way to put a single
brace in text alone without a matching brace. This would
be okay for HTML docs but it breaks LATEX docs because
braces are special in TEX and because Serge was too lazy
to implement a real parser.

• Web hyperlinks are surrounded by <* *>. Text of the
link must begin with http://, https:// or ftp://. Al-
ternatively, a hyperlink with anchored text is made by the
markup <* anchored text |Web URL*>. For example:

<*http://host.net/file.html#anchor*>

or

<*click here|somewebpage.html*>

(the latter example will refer to a local HTML file, i.e. a
file in the documentation directory).

Note: Currently, only the HTML documentation is hyper-
linked, while the printed PS/PDF documentation contains only
text.

• It is also possible to create hyperlinks pointing to other
parts of the documentation. Such “documentation hyper-
links” are similar to the Web hyperlinks, except they use a
special “protocol” named yacasdoc and chapters and sec-
tions can be referred to as ”subdirectories”. For example,
this section can be referred to by the following code:

<*yacasdoc://essays/5/2/*>

A hyperlink with anchored text is made by the markup <*

anchored text |yacasdoc://...*>. For example:

<*this section|yacasdoc://essays/5/2/*>

will generate a reference to this section, in Essays on Ya-
cas, Chapter 5, Section 2 in the documentation. There
are currently the following ways to create documentation
hyperlinks:

1. Hyperlink into an anchor of the same file:

<*yacasdoc://#documentation!hyperlinks*>

The anchor “documentation!hyperlinks” should
have been created using the *A label.

2. Hyperlink into an anchor in a different documentation
book:

<*yacasdoc://Algo/3/#adaptive plotting*>

Note that one must specify the book name “Algo”
and the chapter number (3) for this to work. Cur-
rently supported book names are Algo, coding,
essays, intro, Lisp, ref, and refprog. A warn-
ing message is printed if the book name is not given
correctly.

3. Hyperlink into a given chapter or a given section of a
documentation book:

<*yacasdoc://Algo/3/1/*>

• Mathematical expressions should be typed in Yacas syn-
tax (not in TEX notation) and surrounded by dollar signs.
Both delimiting dollar signs must be within one line of text.
For example: $ x2̂ + y2̂ != z2̂ $ produces x2 + y2 6= z2.
Double dollar signs will denote a displayed equation, like
in TEX; both pairs of dollar signs should still be within one
line.

There is a special feature for displayed equations: Any punc-
tuation immediately following the second pair of dollar signs
will be displayed on the same line. (This is used to get around
the limitation of mathematical expressions that cannot end with
a comma or a period or with another punctuation mark.) For
example, the formula “$$x2̂/2$$,” will produce

x2

2
,

with the comma on the same line. A formula such as ”$x+1;$”
will generate an error; the semicolon should be moved out of the
dollar signs.

21

As special exceptions, one can enter the symbols “TEX” and
“LATEX” as if they are Yacas expressions, i.e. “TeX” produces
”TEX”. One can also create a capitalized form of the name
Yacas as ”{Yacas}”.

Please note: Mathematical expressions must be valid Yacas
expressions, with no unbalanced parentheses, no undefined in-
fix operators, no hanging periods and so on, or else the Yacas
script that formats the docs will fail! (This limits the scope of
mathematical formulae but is hopefully not critical.)

Also, please avoid putting equations into documentation as
plain text. Expressions such as a > 0 are not correctly typeset
by TEX if included into the plain text without the dollar signs:
“a¿0”. (The HTML documentation is currently not affected.)

Currently, when creating online HTML documentation, all
mathematics is kept in Yacas notation and set in boldface font.
(This may change in the future.) Of course, LATEX typesets the
documentation with correct mathematical symbols.

Another feature of the LATEX exporter is that it will first try
to represent all functions and infix operators according to their
mathematical meaning, and if no such meaning is defined in
Yacas, then it will show them exactly as they are written in
Yacas. For infix operators to work, they have to be declared in
the standard library, or else an error will occur when processing
the manual.

For example, the Yacas operators = and == are represented
in LATEX by an equals sign (=), the operator := becomes ”iden-
tically equal” (a ≡ b), and the cosmetic operators <> and <=>

become a ∼ b and a ≈ b. But you cannot use an infix operator
such as “:=*” because it is not defined in the standard library.
A Yacas function which is not defined in the standard library,
for example ”func(x)”, will appear just like that: func (x).

• Documentation may be split between several files for con-
venience. To insert another file, use the *INCLUDE label,
e.g.

*INCLUDE ../essays/howto.chapt

Note that the included document is the file howto.chapt, not
howto.chapt.txt, because it must be a Yacas-language file, not
a .txt file. (The IncludeFile() call, an alias to Load(), will
be used to execute the specified file.)

• Comments may be introduced by the label *REM. The line
and the paragraph of text following *REM will be omitted
from the documentation. An empty line should separate
the *REM block from other text. (A mark-up label at the
beginning of line will also terminate a *REM block.) For
example,

*REM this is

a comment

(documentation text continues)

• Footnotes may be entered as a line containing the label
*FOOT. Footnote text must be within one line (because a
footnote does not necessarily break a paragraph).

For example, the text

*FOOT This is an example footnote

generates the footnote 2

• Yacas expressions may be evaluated inline by using the
directive *EVAL. Anything that follows *EVAL until the end
of the line will be evaluated as a Yacas expression. If this

2This is an example footnote.

expression prints something (e.g. via Write), the output
will be inserted into the text (as is). The resulting value of
the expression will also be inserted, unless the expression
evaluates to True. The Yacas expression must be on one
line.

For example,

*EVAL "Yacas version: " : Version()

will insert the string ‘ Yacas version: 1.3.6 ’ into the man-
ual. Note the spaces around the version string—these additional
spaces are currently unavoidable. 3

Formatting conventions for the reference
manual

The formatting explained in the previous section is enough
to create most of the user guide and tutorial documentation.
The script txt2yacasdoc.pl also implements some additional
markup features to help create the reference manual.

A typical reference manual subsection documenting a certain
function may look like this in plain text:

*CMD PrintList --- print list with padding

*STD

*CALL

{PrintList}(list)

{PrintList}(list, padding);

*PARMS

{list} -- a list to be printed

{padding} -- (optional) a string

*DESC

Prints {list} and inserts the {padding} ...

*E.G.

In> PrintList({a,b,{c, d}}, " .. ")

Out> " a .. b .. { c .. d}";

*SEE Write, WriteString

Compare this with the reference manual section on the function
PrintList to see how this plain text markup is rendered in the
finished documentation.

Notes:

• Some labels have parameters while other labels do not;
labels that do not have parameters must be put alone on
a line.

• The *STD label is for functions defined in the standard li-
brary and the *CORE label is for built-in functions defined
in the Yacas core engine. In addition, the labels *UNIX,
*MSWIN and *MAC can be used to denote Un*x, MS Wind*ws
and Macint*sh-specific add-on functions.

• There must be some whitespace separating a markup label
such as *SEE and the following text. Either TAB characters
or spaces work equally well.

• The comma-space combination ”, ” is mandatory when a
label accepts a list of arguments. (One can put several
spaces after a comma.) Lists of commands are used by the
*CMD and *SEE labels.

3If the absence of spaces is critically important, you can create the
required text in a Yacas expression.

22

• Characters < and > are of special significance to both
HTML and TEX and should be always escaped—either by
braces {} or by dollar signs, as appropriate.

• In the ”examples” section, there may be just one example,
in which case the alternative label ”*EG” could be used
instead of ”*E.G.”. This will currently generate the word
”Example:” instead of ”Examples:” in the documentation.
(This is a cosmetic feature.)

• Each example is a candidate for inclusion into the Yacas
test suite. The Yacas code after the In> prompts and
the resulting expressions that follow the Out> prompt are
extracted into special files by the script txt2example.pl.
(This provides an automatic check that the manual still
agrees with the actual behavior of Yacas.) The script will
ignore any text that is not preceded by In> or Out>. How-
ever, some examples are not appropriate for automatic test-
ing and must be explicitly excluded. An example section
is excluded for testing if the *E.G. or *EG label is followed
by the word ”notest”, for example:

*EG notest

// some advanced tests

Tests may be unsuitable for automatic processing for sev-
eral reasons, including: system-dependent results (e.g.
need to have particular files on the system); calculations
that take a long time; calculations that output something
to the screen and not just return an expression.

• In a subsection there may be either one function docu-
mented or several at once: for example, it may make sense
to document Sin, Cos and Tan together. In this case, all
function names should be simply listed in the *CMD header,
for example:

*CMD Sin, Cos, Tan --- Trigonometric ...

In addition to the above labels, there are the following tags:

• *INTRO to denote a ”reference chapter introduction” corre-
sponding to the ChapterIntro() function

• *BLURB for the short book summary (it enters the HTML
book index and the front page of the LATEX docs)

• *A to manually create an HTML anchor in a reference man-
ual section and an index entry in the printed docs (see
below for more details on indexing)

• *HEAD to create a small heading. The *HEAD tag might
be useful for lowest-level headings. Currently, the spe-
cial markup for the reference manual implements the same
tag for its topical sections (“Parameters”, “See also” etc.)
*HEAD. For instance,

*PARMS

results in the same text as

*HEAD Parameters:

Usage of the *A label currently does not directly affect the
appearance of the docs. In the HTML docs, it inserts the in-
sivible anchor tags <a>. In the printed LATEX docs, the *A

label adds an index entry. The *CMD tag generates all necessary
HTML anchors and index entries for commands in the refer-
ence manual. So only non-command index entries need to be
manually entered using *A.

The *INTRO and *BLURB tags only work for one paragraph.
There must be no empty line between *INTRO/*BLURB and that
paragraph. Also, there must be no empty line between the
“blurb” and the book title (for technical reasons). There must

be one and only one “blurb” paragraph in a “book” and no more
than one “chapter intro” paragraph per chapter.

This markup should be sufficient for creating reference docu-
mentation in plain text.

Indexing the documentation books

It is not difficult to automatically generate an alphabetically
sorted index for the books. An “index entry” is a piece of text
that does not appear in the book where it is entered, but instead
is printed in the alphabetical list at the end of the text with the
relevant page number.

Currently the following facilities are provided for indexing:

1. The label *CMD automatically adds index entries for all com-
mands it describes. In this way, the printed reference man-
ual automatically has every documented command listed
in the index.

2. The label *A can be used to add an index entry by hand.
An index entry can be any text that is admissible in the
documentation (on one line). Preferably it should be some-
thing concise and something that users will want to look
up and can’t easily locate in the table of contents.

After LATEX generates a “raw” index file *.idx, the makeindex
utility is used to post-process and sort the index into the .ind

file. If you do not have makeindex on your system, the book
indices will not be generated.

Note that makeindex is not always friendly to special (non-
alphanumeric) characters. For example, it uses the symbol ! to
separate index topics, which may conflict with Yacas commands.
In other words, document index must be tested and sometimes
debugged.

In the HTML docs, the index is currently not generated on a
separate page, although HTML anchors are inserted in the text.

An index entry may be a “topic” with “subtopics”, which
usually appears in book indices like this:

gnus, 51

tame, 51

wild, 52-341

This effect can be achieved with the ! topic separator:

*A gnus

*A gnus!tame

*A gnus!wild

This is a special feature of makeindex.
Currently, it is possible to include a command or an equation

into an index entry, for example,

*A {InterestingCommand}

*A calculation of $Sqrt(x)$

But this may sometimes conflict with the topic separator.

Summary of mark-up labels

Mark-up labels must appear as first characters on a line. The
following mark-up labels are currently defined:

Labels with an argument on the same line (affect only the
current line):

• *A anchor – insert anchor and index entry

• *BOOK title – start a book, give title

• *EVAL statement – evaluate inline as a Yacas statement
and insert results

• *HEAD heading – lowest-level heading (lower than subsec-
tion)

23

• *FOOT text – insert a footnote

• *INCLUDE filename – include another documentation file

• *YSFILE filename – give an alternative file name for Yacas
code extraction (see the section on book2ys)

Labels that affect the rest of the line and the subsequent
paragraph:

• *BLURB – short summary of the book (must immediately
precede the *BOOK label without any empty lines)

• *INTRO – chapter introduction (significant for HTML only)
(must be separated by an empty line from what follows)

• *REM – documentation comment (must be separated by an
empty line from what follows)

Special labels for the reference manual that accept several
arguments on the same line:

• *CMD or *FUNC – command name and one-line description

• *SEE – ”See also”

Special labels without arguments that generate headings for
the reference manual:

• *STD – ”Standard library”

• *UNIX – ”Unix-specific”

• *MSWIN – ”MS Windows-specific”

• *MAC – ”Macintosh-specific”

• *CORE – ”Core function”

• *CALL – ”Calling format”

• *PARMS – ”Parameters”

• *DESC – ”Description”

• *E.G. – ”Examples”

• *EG – ”Example”

Other special markup:

• *BREAK – insert an explicit line break at this point (no new
paragraph)

• *NEWPAGE – start a new page at this point (LATEX docu-
mentation only)

• <* ... *> – insert a hyperlink

Summary of special markup syntax

Special syntax entities include:

• TAB indented: book title (4 TABs), chapter (3 TABs),
section (2 TABs), subsection (1 TAB and 4 spaces) titles,
sample code (1 TAB)

• asterisk-TAB: enumerated environment

• asterisk-TAB-number-period: itemized environment

• curly braces “{}”: inline code samples, names of functions
or variables (monospaced font)

• special delimiters “<i>” and “</i>”: italics (for emphasis,
not for mathematics). Both delimiters must be on the same
line.

• dollar signs ”$”, ”$$”: inline and displayed mathematical
equations

• special delimiters “<*” and “*>”: Web hyperlinks and doc-
umentation hyperlinks. Both delimiters must be on the
same line.

• the exclamation mark “!”: nested index entries (use inside
the *A label)

Debugging the manual

Sometimes the manual compilation make or make texdocs will
break after you edit the plaintext manual sources. This can
happen for one of these reasons:

1. A math syntax error. You have used a mathematical for-
mula that does not evaluate to a Yacas expression. Unbal-
anced parentheses, invalid infix operators such as >-, =-,
or forgotten punctuation inside the formula such as x+1:

are the most frequent culprits. This will break both HTML
and TEX manual formats.

2. The HTML format compiles but the TEX does not (the
latex commands never finishes, that is, latex prints an
error message which you do not see because it is redirected
to /dev/null, and waits for your input; you have to kill the
process). This means that somewhere the generated TEX
code is incorrect. You probably forgot to balance braces
{} or something more subtle happened.

3. Some mark-up which should not be split between lines was
unintentionally split by reformatting paragraphs in a text
editor. This will sometimes not break the compilation but
will always give undesired results.

In case of a math syntax error, the documentation exporter
cannot print the paragraph where the error occurred, but it
usually prints the preceding paragraph. Currently, the easiest
way to locate the error is to generate the .tex output and look
at it, e.g.:

make ref.book.tex; less ref.book.tex

The last line in the .tex file must be
end{document}. If it is not, then the last portion of the text
you see in the .tex file is the text directly before the paragraph
where the error occurred. Most probably, there is a malfor-
matted math formula in the next paragraph of your plaintext
source.

If the last line is
end{document} but latex does not finish, you will have to run
latex by hand, e.g.

latex ref.book.tex

and look at the error message(s) it prints.

Using the script txt2yacasdoc.pl

The script txt2yacasdoc.pl is used to transform plain text
markup into the Yacas language. The script acts as a stream
filter:

perl txt2yacasdoc.pl < file.txt > file.chapt

In this example, file.txt contains some formatted plain text
(source text) and the resulting file file.chapt will be produced
in Yacas-language documentation format.

There is a single option for txt2yacasdoc:

perl txt2yacasdoc.pl -debug < file.txt \

> file.chapt

This option is to be used for debugging, i.e. when the result-
ing file does not compile in Yacas. The effect of this option is
to introduce more breaks between text strings in the generated
file, so that the Text() function is called more often. It is then
easier to locate the source of the problem in the Yacas-language
file (Yacas will tell you the last line in the Yacas-language file
at which a syntax error occurred). This option is largely ob-
solete because the Text() function is called frequently enough
by default. See below for hints about finding syntax errors in
documentation when the manual does not compile.

24

book2TeX: preparing typeset documentation

The script book2TeX.sh prepares a TEX file out of a Yacas-
language documentation book. Usage is similar to book2txt.sh,
except that only one file is processed at a time and the file must
be a ”book”, not just a ”chapter”. For example:

book2TeX.sh intro.book intro.book.tex

will create a LATEX-formatted version of the introductory tuto-
rial. The LATEX file can be processed with standard tools, for
example

latex intro.book.tex

dvips -o intro.book.ps intro.book dvi

will prepare a Postscript version, while

pdflatex intro.book.tex

will prepare a PDF version.
To generate printed docs, it is necessary to run latex (at

least) three times in a row. This is because at first latex does
not know how much space will be taken by the table of contents
and the index, so the page numbers are all off by a few pages.
Only on the second run latex generates correct page numbers
for the TOC (the .aux file) and for the index (the .idx file).
After this the index file has to be processed by the makeindex

routine to sort it, and the third latex run is needed to actually
insert the correct TOC and the processed index into the final
document.

The shell commands in book2txt.sh execute the following
Yacas commands:

Use("book2TeX.ys");

ToFile("file.chapt.tex")

Load("file.chapt");

This requires that the Yacas script book2TeX.ys be available
in the current directory. The shell script book2TeX.sh as-
sumes that book2TeX.ys is stored in the same directory as
book2TeX.sh and that the Yacas executable is available in the
directory ../src/. Alternatively, the command line of the Ya-
cas executable can be specified by the -run option. For example,
the Makefile runs book2TeX.sh like this:

book2TeX.sh -run "yacas-dir/src/yacas --rootdir

yacas-dir/scripts" file.book file.book.tex

Note that the entire Yacas command line is given in quotes.

Some concerns with the printed documentation

Not all features of the Yacas documentation-generating scripts
are compatible with TEX typesetting. To prevent errors, docu-
mentation source should avoid certain things. In general, it is
a good idea to check the typeset appearance of documentation,
since it helps detect errors.

For example, the symbols %, { }, < >, #,
, and & are special to TEX. They should not normally be used
in plain text; it is okay to use them in ”typewriter” text (within
braces {}) or code samples – but not in section or chapter heads,
because it makes it difficult to export to TEX correctly. TEX
commands may be entered but will not be correctly rendered in
HTML online documentation.

Sometimes fixed-font text will hang over the right edge of the
printed page. A workaround is to break the fixed-font text into
shorter fragments or to rephrase the text.

Another concern is that code examples (TAB-indented
blocks) are typeset in a fixed-width font and may not fit into the
width of the page. To avoid this, the lines in the code examples
should not be longer than about 50 characters.

The current implementation uses a “report” style which al-
lows chapters, sections, subsections and includes an automati-
cally generated table of contents and an index. The standard 10
point font and two-column format are used to save space (and
trees).

The script txt2yacasdoc.pl attempts to convert double
quotes "" into proper English quotation marks “”. However, this
automatic conversion sometimes fails and produces wrongly-
directed quotes. One such case is if the quotes are on the same
line as a TAB character (e.g. in an itemized environment). This
problem can be circumvented by putting the quoted words on a
different line.

Some complicated mathematical expressions may not cor-
rectly render in TEX. This is because Yacas uses its library func-
tion TeXForm() to transform Yacas expressions to TEX. Mathe-
matical expressions are entered in the plain text documentation
source using Yacas syntax, then transformed to a special non-
evaluating call TeXMath() in the Yacas-language documentation,
which formats into HTML using a Write() call or into TEX us-
ing a TeXForm() call, as necessary. Testing should be performed
on documentation before releasing it. The most stringent limita-
tion is that the expression between dollar signs should evaluate
in Yacas (preferably to itself) and not cause syntax errors. In
case of doubt, check that the expression evaluates without er-
rors and then try to use TeXForm on that expression and see if
that evaluates without errors as well. For example, expressions
such as x=+1 will cause a syntax error and this will break the
compilation of the manual (both HTML and TEX).

book2ys: extracting Yacas code from books (”literate
programming”)

book2ys.sh is a shell script that extracts Yacas code examples
from a documentation chapter into a separate file. All other
text is omitted.

Usage is similar to book2TeX.sh. For example, the bench-
marking test code wester.yts can be automatically extracted
from the corresponding essay chapter by the command

sh ../manmake/book2ys.sh wester-1994.chapt \

wester.yts

After this command, the file wester.yts is created. Note that
wester-1994.chapt is in Yacas language and is itself a gener-
ated file.

To prepare a documentation chapter in such a way that code
extraction is possible, one needs to make sure that all code
examples in the chapter taken together will become a correct
sequence of Yacas expressions when cut out and written sequen-
tially into a file. So, for instance, semicolons at the end of each
statement are required. The script book2ys will not export ex-
ample Yacas session code with ”In>” and ”Out>” prompts but
it will export all other example code.

The example code with “In>” and ”Out>” prompts will be-
come comments in the exported Yacas file. It is possible to
suppress this comment generation by the -strip option to the
book2ys.sh script.

If the output file name is not given, the name will be the same
as the Yacas book source name but with the .ys extension.

See the source file wester-1994.chapt.txt to get a feeling of
how the source documentation is formatted to allow completely
automatic code extraction. Note that the printed documenta-
tion may be in twocolumn format, and therefore it is necessary
to split lines that are too long.

Using the script book2ys.sh, one can write documentation
and code together, a la ”literate programming”. The main idea

25

of literate programming is that the program code and the doc-
umentation should be written as one large book explaining to
humans how the program is organized and how it works. From
this book, a printable copy is generated and all code is auto-
matically extracted for compilation.

Literate programming may require that code be split between
many source files, and yet it may be convenient to keep all
descriptions in one book. The special document formatting label
*YSFILE can be used to redirect output to different Yacas source
files.

By default, the output goes to the file specified on the
book2ys.sh command line. This default can be restored by the
directive “*YSFILE -” at any time. Otherwise, all code output
will be printed to the file specified after the *YSFILE label.

Note that the multiple file support is somewhat restrictive:

• Once the output file name has been changed, the old file is
closed and cannot be appended to. (This is a limitation of
the ToFile() function in Yacas.)

• If the same file name is chosen again, the file will be over-
written.

• If the output file has been changed at least once, then at
the end of the document the file name must be reset to the
default “-”. Otherwise the last file will not be properly
closed.

Here is an example of using multiple files. Note how docu-
mentation text is interspersed with TAB-indented code.

Text that does not appear in the code.

// code into default file

// more code

*YSFILE script1.ys

This will not appear in the file.

x:=1;

// some code for the file script1.ys

*YSFILE script2.ys

// some code for the file script2.ys

End of the example, need to reset *YSFILE.

*YSFILE -

After processing this file with book2ys.sh, one should get three
files with Yacas code.

ys2book: extracting documentation from Yacas code
(”literate programming”)

The standard view of literate programming is that one prepares
a book readable by humans, and all code is automatically ex-
tracted from the book. The focus in this approach is on writing
explanations on how the code works.

The converse approach is to write primarily code and em-
bed some documentation as comments in the code files. This
approach is implemented by the script ys2book.pl.

This script takes a Yacas script file and extracts Yacas com-
ments from it into another file. Usage may look like this:

perl ys2book.pl < file.ys > file.chapt.txt

perl ys2book.pl -strip < file.ys > file.chapt.txt

Here file.ys is the source file and file.chapt.txt is the out-
put file.

Not all comments may be desirable as documentation. For-
matting of comments is implemented as follows:

• Line comments starting at the beginning of line with three
or more slashes (“///”, ”////” etc.) are exported as doc-
umentation. Line comments starting with “//” are not

exported. Line comments that are found after some Ya-
cas statements are also not exported. For example, if the
source file contains the following lines,

a:=1; // initialize a.

///// This function needs

/// an initializer.

b:=1; /// also initialize b.

then only the text

This function needs

an initializer.

will appear in the output file. Note that the initial spaces
are stripped from the line comment strings.

• Block comments starting with “/**” become documenta-
tion. The block comment must be the only content of the
line. For example,

/** documentation text */

/** continues

here*/

will export the following:

documentation text

continues

here

Note that some initial spaces have been stripped. See below
for more detail about the stripping of spaces.

• Multiline comments marked with an initial asterisk “*”
become documentation with the initial asterisk removed.
For example, in the block comment

/** This starts

* a multiline

* comment.

*/

the initial * and any spaces before it will be removed from
each line. This feature is designed to make the format
easier to comprehend visually, if the documentation needs
to be specially formatted.

• All other comments remain unexported code comments.

• All Yacas code, including unexported comments, is TAB-
indented and printed to the output file, unless the ”-strip”
option is given. (TAB-indentation is the Yacas documen-
tation markup for code examples.) With the “-strip”
option, the output file will contain only exportable docu-
mentation comments and no code samples.

All exported text is printed to the output file as is, without
any additional reformatting. The only change to the text is
stripping of initial spaces.

Any leading spaces after the beginning of the comment sign
are removed. For example,

/* text */

will be exported as just “text” without the leading spaces. In a
multiline comment, such as

/* start

of comment */

the leading spaces in the first line will be stripped. However,
the leading spaces (and TABs) in other lines of the multiline
comment block will be preserved.

Empty lines can be introduced into the documentation either
as part of a multiline comment block, or as a standalone empty
comments such as

26

///

////////

With these features it is easy to prepare the embedded doc-
umentation in the Yacas plaintext documentation format. This
format requires space- and TAB-based formatting, which is
mostly preserved by the script ys2book.pl.

ytxt2tex: Conversion of plain text documentation to
LATEX

An auxiliary script ytxt2tex converts plain text documentation
to LATEX. The script ytxt2tex can be used outside of the Yacas
source tree to convert individual documents to LATEX. This is
useful if you would like to produce TEX documents and if you
find the plain text format of the Yacas documentation more
comfortable. Therefore, ytxt2tex is a kind of a special-purpose
TEX preprocessor designed for producing Yacas documentation.

This is a standalone script; it is installed by default
into /usr/local/bin and requires the Yacas executable also
on the path, as well as the script files book2TeX.* and
txt2yacasdoc.pl in the /manmake subdirectory of the Yacas
installation tree /usr/local/share/yacas/. The script also re-
quires perl and the Unix shell sh.

Limitations of this script are:

• it is impossible to include raw TEX code;

• mathematical expressions are limited to those repre-
sentable using Yacas functions and operators from the stan-
dard library;

• the document comes out to be a twocolumn ”report” with
a certain fixed title page format, a table of contents, and
an index;

• front matter is fixed (“This is Yacas documentation... by
the Yacas team... GNU Free Documentation License...”
etc.) and will most probably have to be edited by hand if
you need to prepare anything other than Yacas documen-
tation;

• all current limitations of plaintext documentation format,
for example, no nested itemized/enumerated environments;

• some advanced features of index generation (e.g. the !

separators combined with other markup) are not yet sup-
ported.

These limitations may be easily overcome by editing the re-
sulting TEX file (but you need to know at least some TEX to do
that).

The general usage pattern is

ytxt2tex [-o outputfile] file1.txt [file2.txt] ...

All source files must have extension “.txt”. The command-line
option -o specifies the name of the output TEX file. If the -o

option is not given, the output file will be file1.tex (i.e. the
name of the first .txt file with the .tex extension). If several
.txt files are given, the first one must *INCLUDE all others.

To illustrate the usage of the script ytxt2tex, consider two
examples.

The first example is just one plaintext file example1.txt.
This file will have to be a ”book” in itself, i.e. it will have
to include a book title indented by four TAB symbols. For ex-
ample:

*REM file: example1.txt

Example Document Title

*REM this is a section title:

Numbers and letters

*REM here are some index entries:

*A numbers

*REM simple index entries like this are OK

*A letters

Numbers and letters are very important, etc.

This file example1.txt can be converted to a LATEX file
example1.tex by the following simple command:

ytxt2tex example1.txt

If the resulting file should be named something other than
example1.tex, say output1.tex, then the command is

ytxt2tex -o output1.tex example1.txt

The second example is a longer “book” consisting of several
plaintext files. One of these files is a “master file” and it should
include all other files using the *INCLUDE label. The *INCLUDE

label should contain file names without the .txt extension.

Suppose we have prepared the files book1.txt, chapter1.txt,
and chapter2.txt containing the preamble text and two chap-
ters. For example:

*REM this is the file "book1.txt"

*BLURB or, The Multitudinous Attempts

to Avoid Counterproductivity

Relationships of Entities

*INCLUDE chapter1

*INCLUDE chapter2

The chapter files might be:

*REM this is the file "chapter1.txt"

Entities and Epiphenomena

The history of the ambiguous question of

epiphenomenological discourse can be

traced to the pre-postmodern period...

*REM this is the file "chapter2.txt"

Substrates and Superficiality

In the preceding chapter, we have thoroughly

investigated the metaphilosophical aspects of

the trans-homocentric considerations...

The command to create the final LATEX file book1.tex is

ytxt2tex book1.txt chapter1.txt chapter2.txt

The “master file” book1.txt that includes all other text files
must be given first. The -o option can be used if the final
LATEX file should be named something else than book1.tex. For
example,

ytxt2tex -o MyBook.tex book1.txt chapter*.txt

By default, both table of contents and the index are gener-
ated. The commands to create a PostScript file out of the LATEX
file might be:

latex MyBook.tex

latex MyBook.tex

makeindex MyBook.idx -o MyBook.ind

latex MyBook.tex

Note that the resulting LATEX file needs to be processed three
times if the table of contents or index are to be used. Without a
table of contents and index, it is enough to process the file with
LATEX twice.

27

book2txt: Conversion of existing documentation to plain
text

(Note: as of version 1.0.49, all Yacas documentation is converted
to plaintext format. This section is left for reference only.)

Currently, most but not all of the Yacas documentation
markup functionality is implemented in the simple plaintext fil-
ter; also, documentation includes some extra HTML files. How-
ever, almost all of the reasonable markup needed to write docu-
mentation is present. Therefore it is possible to maintain most
of the documentation in the plain text format described above.
To convert existing Yacas documentation back to the plain text
format, a script book2txt.ys/book2txt.sh can be used.

By using a command such as

book2txt.sh file.chapt

one can create a source text file file.chapt.txt corresponding
to the Yacas documentation file file.chapt. For example:

12:51pm scriabin> book2txt.sh intro.book

True;

Out> True;

Quitting...

File ’intro.book.txt’ was created.

12:51pm scriabin>

In the above example, the shell commands in book2txt.sh

executed the following Yacas commands,

Use("book2txt.ys");

ToFile("file.chapt.txt")

Load("file.chapt");

This requires that the Yacas script book2txt.ys be available
in the current directory. The shell script book2txt.sh as-
sumes that book2txt.ys is stored in the same directory as
book2txt.sh.

Of course, it is possible that some features of Yacas documen-
tation were not implemented in the script and in that case the
resulting file must be edited by hand. But the purpose of the
book2txt script is exactly this: to make a plain text source file
to be edited and maintained.

Several files can be converted at once, for example:

book2txt.sh f1.chapt f2.chapt file3.book

Each file is processed by an independent Yacas session. Any
errors of processing are printed on the screen.

5.3 The Yacas build system

Introduction

This chapter describes the build system of Yacas. So here you
will find what happens when you give the configure or the
make command, and how to change this. It will concentrate on
Unix systems; other architectures are briefly covered in the final
section.

As the Yacas build system is built on the GNU autotools
suite, which contains both automake and autoconf, we will start
with a short description of this package. Then we will turn to
the various components of Yacas: the program itself, the script
files, the documentation, the test suite, and so on.

As explained in the INSTALL file, building Yacas requires the
following steps.

• (This step is only necessary if building from CVS.) Start by
running the makemake script. This executes the automake

and autoconf programs.

• Then the configure script should be run.

• Finally, Yacas can be built by giving the make command.

Both configure and make accept many options. Some of
them are explained below.

The GNU autotools suite

The GNU autotools suite is a collection of applications to
streamline the build system of other programs, like Yacas. Its
two main goals are to present a consistent build procedure to
users, and to assist developers in tackling portability problems.

The autotools suite consists of a number of utilities. These
are developed separately, but are designed to be used together.
They are

• automake. Its main goal is to produce a Makefile.in

file from a high-level description in the Makefile.am file.
The configure script generated by autoconf will later
transform it in a Makefile. The generated Makefiles are
portable and contain all the targets specified in the GNU
Coding Standards document, like all, install and clean.

• autoconf. Its main goal is to produce the configure script.
When Yacas is built, this script gathers information from
the user’s system, like the operating system and the loca-
tion of certain programs used by the Yacas build system.
This information is used in turn by the Makefiles.

• libtool. This utility provides a portable interface for
building and using libraries. Static libraries, shared li-
braries and dynamically loadable modules are all sup-
ported.

The users do not need to run automake and autoconf (here,
”users” refers to the people who do not want to make any
changes to Yacas and includes those who just want to compile
Yacas from a tar.gz source archive). They do need the libtool

script. But the libtool package is included in the Yacas distri-
bution, so the users do not need to install libtool themselves.

Developers do need to install autoconf and automake on their
systems. But they usually do not need to run these tools di-
rectly, as the Makefiles contain the necessary commands. When
the Makefiles are not present, which occurs for instance when
installing afresh from the CVS repository, the makemake script
in the root of the Yacas source tree can (and probably should)
be used to invoke automake and autoconf in the right order and
with the correct flags.

In the following three sections, these utilities are briefly ex-
plained. In all cases, the reader is referred to the documentation
included in the autotools suite for more information. Another
useful source of information is GNU Autoconf, Automake, and
Libtool by Gary V. Vaughan, Ben Elliston, Tom Tromey and Ian
Lance, which is published by New Riders. An online version is
available from http://sources.redhat.com/autobook.

The automake tool

Automake is a tool to generate standard-compliant Makefiles.
More precisely, automake uses the information in Makefile.am

to produce a Makefile.in file, which will be turned into a
Makefile by the configure script generated by the autoconf

utility.
The Makefile.am file contains the definition of certain macros

that are used by automake. The rest of the Makefile.am file is
copied verbatim to the generated Makefile.in file.

The most important macros which are used by automake

are the so-called primaries. These list the files that make up
the Yacas package. For instance, in the src directory, the file
Makefile.am contains the following line

28

bin_PROGRAMS = yacas

This is an example of the PROGRAMS primary, and says that the
directory contains a program called yacas. Hence it will be built
if the make all command is executed, it will be installed at make
install, etc. Other useful primaries are SCRIPTS for executable
scripts, HEADERS for header files, and DATA for all files which are
just copied verbatim at installation time (this includes Yacas
scripts).

The bin prefix in the example above says that yacas

should be installed in the binary directory, as determined
by the configure script. By default, this is the directory
/usr/local/bin. There are also prefixes for the other direc-
tories, as well as some prefixes with different meanings: the
noinst prefix says that the specified file need not be installed,
and the check prefix says that the file is only needed when test-
ing.

There are also so-called associated variables. The same
Makefile.am contains the following variables associated to the
Yacas executable:

yacas_SOURCES = yacasmain.cpp commandline.cpp \

unixcommandline.cpp stdcommandline.cpp

yacas_LDADD = libyacas.a libyacasplatform.a

These lines tell that the executable is built from four source
files (yacasmain.cpp, commandline.cpp, unixcommandline.cpp
and stdcommandline.cpp) and two static libraries (libyacas.a
and libyacasplatform.a).

From the information contained in these lines, automake can
construct the necessary commands to go in the final Makefile.
This Makefile does not only support building, testing, and in-
stalling the package, but also rolling the tar-ball for release (use
make dist for this, as explained in the section ”Targets for
make”, in this book below). In the above example, automake

can figure out that yacasmain.cpp should be included in the
distribution.

Unfortunately not everything is supported that well. For in-
stance, Yacas comes with its own documentation system, which
is of course not supported by automake. So we need to tell
automake how to handle these files. To specify which files should
be included in the distribution, the EXTRA DIST variable can be
used. The developer should list all files to be included in the
distribution that automake does not know about here. If we
want to run some commands at build or installation time, we
can specify them by Makefile rules in the traditional ways. Just
write the rules in Makefile.am and they will be copied verbatim
in the generated Makefile. Please keep in mind that the rules
should work on a wide variety of platforms in order to retain
portability. In particular,

• remember that the source files may be in a different direc-
tory, if the user decides to use separate source and build
trees (see ”The configure script”, in this book);

• only use the automatic variable $< in suffix rules, as Solaris
make does not define $< correctly in other rules;

• do not use pattern rules (like %.o: %.c) as they are not
supported on all platforms, use suffix rules (like .c.o:)
instead.

We currently assume automake version 1.4 or later. Note
that version 1.5 breaks backward compatibility and should be
avoided. Version 1.6 contains some useful additions, like the
nobase prefix and the possibility to define new prefixes, so at a
certain point we may require version 1.6.

For more information about automake, the reader is referred
to the documentation that comes with the package.

The autoconf tool

Autoconf is a tool to generate portable shell scripts that users
can run to configure the package (in our case Yacas) for their sys-
tem. It reads the file configure.in and produces the configure
script. The latter script can be run by the user to prepare for
building Yacas.

The configure.in file consists of standard shell code, inter-
spersed with special macros defined by the autoconf package.
These can be recognized by the AC prefix.

As the configure.in file only rarely needs to be changed, we
will only describe the autoconf tool by one example.

This ends the brief description of autoconf. For more infor-
mation, the reader is referred to the documentation that comes
with the package.

We currently assume autoconf version 2.13 or later.

The configure script

The configure script is run by the user to prepare the Ya-
cas package for the build and installation process. It examines
the user’s system and the options passed to the script by the
user, and generates suitable Makefiles. Furthermore, it gener-
ates yacas.spec which is used to build a package in Red Hat’s
.rpm format, and the C header file config.h.

A nice feature is the possibility to build in a different direc-
tory than the source directory by simply running configure

from that directory. This not only prevents the source direc-
tory from being cluttered up by object files and so on, but it
also enables the user to build for different architectures in dif-
ferent directories or to have the source in a read-only directory.
For example, suppose that the Yacas source is installed under
/mnt/cdrom/src/yacas and that you want to build Yacas under
/tmp/build-yacas. This is achieved by the following commands

mkdir /tmp/build-yacas

cd /tmp/build-yacas

/mnt/cdrom/src/yacas/configure

make

A list of options accepted by the configure script can be
retrieved by invoking it with the help option

./configure --help

The most important is the prefix option, which influences
where everything will be installed. The default is /usr/local,
meaning that for instance the yacas executable is installed as
/usr/local/bin/yacas. To change this in /usr/bin/yacas, in-
voke the script as follows

./configure --prefix=/usr

Other options to configure enable the user to fine-tune the
location where the various files should be installed.

We will not describe the common configure options which
are shared by all packages, but will restrict ourselves to the
options exclusively used by Yacas.

• with-numlib=LIB. This option specifies the arbitrary-
precision library to use. The supported values for LIB so
far are native (the default).

• enable-debug. Build a version of Yacas suitable for de-
bugging.

• enable-archive. Build and install the library archive. The
library archive resides in the file scripts.dat and contains
all the Yacas scripts in compressed form.

• enable-server. Build a version of the Yacas executable
which accepts the --server flag, which puts Yacas in server
mode (see ”Command-line options”, in Introduction to Ya-
cas, Chapter 3, Section 1)

29

The following three options pertain to the extensive docu-
mentation that comes with Yacas. By default, only HTML doc-
umentation is generated.

• disable-html-doc. Do not generate documentation in
HTML format.

• enable-ps-doc. Generate documentation in PostScript
format. This requires the latex suite.

• enable-pdf-doc. Generate documentation in PDF format.
This also requires the latex suite.

Then there are three options describing where to install var-
ious parts of the Yacas package.

• with-script-dir=DIR. Install the Yacas script files, which
have extension .ys, in the specified directory. By de-
fault, the script files are installed in DATADIR/yacas, where
DATADIR defaults to PREFIX/share. In turn, PREFIX refers
to the value of the prefix option described above; the de-
fault value is /usr/local. The conclusion is that the script
files by default end up in /usr/local/share/yacas.

• with-html-dir=DIR. This specifies where to install the
HTML documentation for the Yacas package. The default
is a subdirectory named documentation of the directory in
which the Yacas script files are installed.

• with-ps-dir=DIR. Where to install the PostScript and
PDF documentation. This defaults to the same directory
as for the documentation in HTML format.

Furthermore, the opposites of the above options (eg.
disable-server) are also recognized.

Targets for make

One of the advantages of using the autotool suite to generate
Makefiles, is that the resulting Makefiles support a variety of
targets. Here is a partial list of them.

• all. This is the default target, so instead of make all

one can just type make. It builds the executables, which
includes yacas, and the documentation. By default, only
documentation in HTML format will be built, but this can
be changed by the configure script.

• install. Compile the executables, and install them to-
gether with the libraries, Yacas scripts, and documentation
so that the Yacas program can be run.

• install-strip. Same as install, but also strip the debug
information from the installed executables.

• uninstall. Remove the installed files.

• clean. Delete files that are created during the build pro-
cess, for instance .o files.

• distclean. Delete files that are created during either the
configuration or the build process. This leaves only the
files in that were included in the distribution.

• dist. Create a tar-ball (a gzipped tar archive) ready for
distribution.

• check (or its synonym test). Test whether Yacas works
correctly.

• installcheck. Test whether Yacas is installed correctly.
The difference with the check target is that that one tests
the built version of Yacas, while the installcheck target
tests the installed version.

• distcheck. Check whether Yacas is ready for distribu-
tion. This creates a tar-ball, unpacks it in a different di-
rectory, compiles Yacas with default options, installs it in
a temporary directory, and finally checks that the installed
version works correctly. Extra flags to be passed to the
configure script (eg. --enable-archive) can be put in
the DISTCHECK CONFIGURE FLAGS environment variable.

The Yacas executable

The main executable is called yacas and resides in the src di-
rectory.

Conceptually, the build process consists of the following parts:

• Generating the source files. Almost all source files were
written by the Yacas development team, but the fol-
lowing are generated automatically: version.h (gener-
ated from configure.in), fastprimes.c (generated by the
mkfastprimes program), and core yacasmain.h (gener-
ated from yacasmain.cpp).

• Building the executables. Besides the Yacas executa-
bles, we also build mkfastprimes and gencorefunctions

(which are needed to generate some source files), and the
codereviewer executable (which does a static analysis of
code and can in some circumstances also fix the code where
the coding style is not adhered to).

The Yacas script files

The Yacas script files with extension ys can be found in the
scripts/ directory and its ”repository” subdirectories.

All script files and .def files are listed in Makefile.am. This
definition is used to generate the packages.ys file, which con-
tains a list of all .def files. The corefunctions.ys file is
also automatically generated. This is done by running the
gencorefunctions program, which resides in the src/ direc-
tory.

At installation time, all the script files and .def files that are
listed in Makefile.am are copied. During this installation, the
directory structure should be preserved.

The check target checks that all the script files and .def files
listed in the Makefile.am are indeed present, and vice versa,
that all files present in the scripts/ hierarchy are indeed listed.

The documentation

The documentation system for Yacas is explained in Essays on
Yacas, Chapter 5, Section 2.

The documentation is generated from plain text source files
with the txt extension in the manmake directory. The source
files are converted to Yacas code by the txt2yacasdoc.pl script.
The result is a set of Yacas source files containing the text of
the documentation. These Yacas source files are not well suited
for human reading and must be further processed to obtain the
books in HTML and PS/PDF formats.

To generate the books in HTML format, the Yacas source
files are processed by the Yacas interpreter using the scripts
manualmaker and indexmaker. The script indexmaker creates
the file books.html with the top-level index to all HTML doc-
umentation books. The script manualmaker creates the HTML
files with the book text (both the framed and the non-framed
versions are written out). It is also possible to generate more
than one HTML book at once. The two reference manuals are
generated together to produce the full hyperlinked index to all
commands.

30

To generate the books in PostScript and PDF format, the
book2TeX.sh script is used. This script converts the Yacas
source files to TEX files. They can then be processed by the
standard TEX tools.

By default, only the HTML-formatted documents are gen-
erated. To change this, use the options disable-html-doc,
enable-ps-doc and enable-pdf-doc in the configure script.
The with-html-dir and with-ps-dir options can be used to
tell where the documentation should be installed.

At the moment, the Makefile.am for the documentation is
rather messy. For this reason, we do not describe it in detail.
Instead, we just point out some special features:

• The Yacas interpreter and perl are needed to generate the
documentation.

• The section ”Full listing of core functions”, in The Yacas
Programmer’s Function Reference, Chapter 5, Section 1 is
generated from the Yacas source by the gencorefunctions

program, which resides in the src directory.

• The Yacas code from the section M. Wester’s CAS bench-
mark and Yacas, built from wester-1994.chapt.txt, is
extracted with the book2ys.sh script. This code is used
for testing (see below).

• All the scripts described can be found in the manmake di-
rectory.

The test suite

The Yacas distribution contains a (hopefully comprehensive)
test suite, which can be used to check whether Yacas is (still)
functioning correctly. The command make check tests the lat-
est compiled version of Yacas. To test the executable that is
installed on your system, use the command make installcheck.

The yts files in the tests directory contain the tests for differ-
ent subsystems of Yacas. For instance, the file arithmetic.yts

contains tests for the basic arithmetic functions; the first test is
to check that 3+2 evaluates to 5. All the test files are listed in
the TESTFILES variable. This variable can be overridden. For
example, the command

make TESTFILES=’comments.yts complex.yts’ clean

only runs the test scripts comments.yts and complex.yts.

The shell script test-yacas does the actual testing. It runs
the scripts listed in the TESTFILES variable through the Yacas
executable. The tests that take a long time are at the end of
the list, so that these tests are performed last. The output
of the tests is collected in the file testresult.txt. The test
is considered to be failed, if the exit code is nonzero (which
happens for instance if Yacas crashes) or if either of the strings
****** (six stars) or Error appear in the output.

A special case is the last test, which goes through the prob-
lems put forward by Michael Wester (see the section M. Wester’s
CAS benchmark and Yacas, in Essays on Yacas, Chapter 2).
The commands for this tests are not in a yts file in the tests

directory, but are extracted from the documentation (see the
immediately preceding section, in this book).

The library archive

The library archive is a file, commonly called scripts.dat,
which contains all the scripts in compressed form. If Yacas is
started with the --archive flag, it uses the contents of this file.
This is useful for binary releases, as one needs only two files:
the Yacas executable and the library archive.

Support for the library archive resides in the src/ directory.
It contains the code for the compressor program. This program
generates the library archive.

The archive is only built if the enable-archive option is
passed to the configure script. In that case, the compressor

program is built and run. At installation time, the generated
archive is installed in the library directory (/usr/local/lib by
default). There is also a test to check that the generated archive
in fact works.

31

Chapter 6

Designing modules in the Yacas scripting
language

6.1 Introduction

For any software project where the source code grows to a sub-
stantial amount of different modules, there needs to be a way
to define interfaces between the modules, and a way to make
sure the modules don’t interact with the environment in an un-
intended way.

One hallmark of a mature programming language is that it
supports modules, and a way to define its interface while hiding
the internals of the module. This section describes the mecha-
nisms for doing so in the Yacas scripting language.

6.2 Demonstration of the problem

Unintentional interactions between two modules typically hap-
pen when the two modules accidentally share a common
“global” resource, and there should be a mechanism to guar-
antee that this will not happen.

The following piece of code is a little example that demon-
strates the problem:

SetExpand(fn_IsString) <-- [expand:=fn;];

ram(x_IsList)_(expand != "") <-- ramlocal(x);

expand:="";

ramlocal(x) := Map(expand,{x});

This little bit of code defines a function ram that calls the
function Map, passing the argument passed if it is a string, and if
the function to be mapped was set with the SetExpand function.
It contains the following flaws:

1. expand is a global variable with a rather generic name, one
that another module might decide to use.

2. ramlocal was intended to be used from within this module
only, and doesn’t check for correctness of arguments (a
small speed up optimization that can be used for routines
that get called often). As it is, it can be called from other
parts, or even the command line.

3. the function ramlocal has one parameter, named x, which
is also generic (and might be used in the expression passed
in to the function), and ramlocal calls Map, which calls
Eval on the arguments.

The above code can be entered into a file and loaded from the
command line at leisure. Now, consider the following command
line interaction after loading the file with the above code in it:

In> ramlocal(a)

In function "Length" :

bad argument number 1 (counting from 1)

Argument matrix[1] evaluated to a

In function call Length(a)

CommandLine(1) : Argument is not a list

We called ramlocal here, which should not have been allowed.

In> ram(a)

Out> ram(a);

The function ram checks that the correct arguments are
passed in and that SetExpand was called, so it will not eval-
uate if these requirements are not met.

Here are some lines showing the functionality of this code as
it was intended to be used:

In> SetExpand("Sin")

Out> "Sin";

In> ram({1,2,3})

Out> {Sin(1),Sin(2),Sin(3)};

The following piece of code forces the functionality to break
by passing in an expression containing the variable x, which is
also used as a parameter name to ramlocal.

In> ram({a,b,c})

Out> {Sin(a),Sin(b),Sin(c)};

In> ram({x,y,z})

Out> {{Sin(x),Sin(y),Sin(z)},Sin(y),Sin(z)};

This result is obviously wrong, comparing it to the call above.
The following shows that the global variable expand is exposed
to its environment:

In> expand

Out> "Sin";

6.3 Declaring resources to be local
to the module

The solution to the problem is LocalSymbols, which changes ev-
ery symbol with a specified name to a unique name that could
never be entered by the user on the command line and guaran-
tees that it can never interact with the rest of the system. The
following code snippet is the same as the above, with the correct
use of LocalSymbols:

LocalSymbols(x,expand,ramlocal) [

SetExpand(fn_IsString) <-- [expand:=fn;];

ram(x_IsList)_(expand != "") <-- ramlocal(x);

expand:="";

ramlocal(x) := Map(expand,{x});

];

32

This version of the same code declares the symbols x, expand
and ramlocal to be local to this module.

With this the interaction becomes a little bit more pre-
dictable:

In> ramlocal(a)

Out> ramlocal(a);

In> ram(a)

Out> ram(a);

In> SetExpand("Sin")

Out> "Sin";

In> ram({1,2,3})

Out> {Sin(1),Sin(2),Sin(3)};

In> ram({a,b,c})

Out> {Sin(a),Sin(b),Sin(c)};

In> ram({x,y,z})

Out> {Sin(x),Sin(y),Sin(z)};

In> expand

Out> expand;

6.4 When to use and when not to
use LocalSymbols

The LocalSymbols should ideally be used for every global vari-
able, for functions that can only be useful within the module and
thus should not be used by other parts of the system, and for lo-
cal variables that run the risk of being passed into functions like
Eval, Apply, Map, etc. (functions that re-evaluate expressions).

A rigorous solution to this is to make all parameters to func-
tions and global variables local symbols by default, but this
might cause problems when this is not required, or even wanted,
behaviour.

The system will never be able to second-guess which function
calls can be exposed to the outside world, and which ones should
stay local to the system. It also goes against a design rule
of Yacas: everything is possible, but not obligatory. This is
important at moments when functionality is not wanted, as it
can be hard to disable functionality when the system does it
automatically.

There are more caveats: if a local variable is made unique
with LocalSymbols, other routines can not reach it by using
the UnFence construct. This means that LocalSymbols is not
always wanted.

Also, the entire expression on which the LocalSymbols com-
mand works is copied and modified before being evaluated, mak-
ing loading time a little slower. This is not a big problem, be-
cause the speed hit is usually during calculations, not during
loading, but it is best to keep this in mind and keep the code
passed to LocalSymbols concise.

33

Chapter 7

The Yacas arithmetic library

7.1 Introduction

Yacas comes with its own arbitrary-precision arithmetic library,
to reduce dependencies on other software.

This part describes how the arithmetic library is embedded
into Yacas.

7.2 The link between the inter-
preter and the arithmetic li-
brary

The Yacas interpreter has the concept of an atom, an object
which has a string representation. Numbers are also atoms and
are initially entered into Yacas as decimal strings. 1 As soon
as a calculation needs to be performed, the string representa-
tion is used to construct an object representing the number, in
an internal representation that the arithmetic library can work
with.

The basic layout is as follows: there is one class BigNumber

that offers basic numerical functions, arithmetic operations such
as addition and multiplication, through a set of class methods.
Integers and floating-point numbers are handled by the same
class.

The BigNumber class delegates the actual arithmetic opera-
tions to the auxiliary classes BigInt and BigFloat. These two
classes are direct wrappers of an underlying arithmetic library.
The library implements a particular internal representation of
numbers.

The responsibility of the class BigNumber is to perform pre-
cision tracking, floating-point formatting, error reporting, type
checking and so on, while BigInt and BigFloat only concern
themselves with low-level arithmetic operations on integer and
floating-point numbers respectively. In this way Yacas isolates
higher-level features like precision tracking from the lower-level
arithmetic operations. The number objects in a library should
only be able to convert themselves to/from a string and perform
basic arithmetic. It should be easy to wrap a generic arithmetic
library into a BigNumber implementation.

It is impossible to have several alternative number libraries
operating at the same time. [In principle, one might write the
classes BigInt and BigFloat as wrappers of two different arith-
metic libraries, one for integers and the other for floats, but at
any rate one cannot have two different libraries for integers at
the same time.] Having several libraries in the same Yacas ses-
sion does not seem to be very useful; it would also incur a lot of
overhead because one would have to convert the numbers from

1There are functions to work with numbers in non-decimal bases,
but direct input/output of numbers is supported only in decimal no-
tation.

one internal library representation to another. For performance
benchmarking or for testing purposes one can compile separate
versions of Yacas configured with different arithmetic libraries.

To embed an arbitrary-precision arithmetic library into Ya-
cas, one needs to write two wrapper classes, BigInt and
BigFloat. (Alternatively, one could write a full BigNumber

wrapper class but that would result in code duplication un-
less the library happens to implement a large portion of the
BigNumber API. There is already a reference implementa-
tion of BigNumber through BigInt and BigFloat in the file
numbers.cpp.) The required API for the BigNumber class is
described below.

7.3 Interface of the BigNumber class

The following C++ code demonstrates how to use the objects
of the BigNumber class.

// Calculate z=x+y where x=10 and y=15

BigNumber x("10",100,10);

BigNumber y("15",100,10);

BigNumber z;

z.Add(x,y,10));

// cast the result to a string

LispString str;

z.ToString(str,10);

The behaviour is such that in the above example z will contain
the result of adding x and y, without modifying x or y. This is
equivalent to z:=x+y in Yacas.

A calculation might modify one of its arguments. This might
happen when one argument passed in is actually the object per-
forming the calculation itself. For example, if a calculation

x.Add(x,y);

were issued, the result would be assigned to x, and the old value
of x is deleted. This is equivalent to the Yacas code x:=x+y. In
this case a specific implementation might opt to perform the op-
eration destructively (“in-place”). Some operations can be per-
formed much more efficiently in-place, without copying the ar-
guments. Among them are for example Negate, Add, ShiftLeft,
ShiftRight.

Therefore, all class methods of BigNumber that allow a
BigNumber object as an argument should behave correctly when
called destructively on the same BigNumber object. The result
must be exactly the same as if all arguments were copied to
temporary locations before performing tasks on them, with no
other side-effects. For instance, if the specific object represent-
ing the number inside the numeric class is shared with other
objects, it should not allow the destructive operation, as then
other objects might start behaving differently.

34

The basic arithmetic class BigNumber defines some simple
arithmetic operations, through which other more elaborate func-
tions can be built. Particular implementations of the multiple-
precision library are wrapped by the BigNumber class, and the
rest of the Yacas core should only use the BigNumber API.

This API will not be completely exposed to Yacas scripts,
because some of these functions are too low-level. Among the
low-level functions, only those that are very useful for optimiza-
tion will be available to the Yacas scripts. (For the functions
that seem to be useful for Yacas, suggested Yacas bindings are
given below.) But the full API will be available to C++ plu-
gins, so that multiple-precision algorithms could be efficiently
implemented when performance is critical. Intermediate-level
arithmetic functions such as MathAdd, MathDiv, MathMod and so
on could be implemented either in the Yacas core or in plug-
ins, through this low-level API. The library scripts will be able
to transform numerical expressions such as x:=y+z into calls of
these intermediate-level functions.

Here we list the basic arithmetic operations that need to be
implemented by a multiple-precision class BigNumber. The oper-
ations are divided into several categories for convenience. Equiv-
alent Yacas script code is given, as well as examples of C++
usage.

1. Input/output operations.

• BigNumber::SetTo – Construct a number from a string in
given base. The format is the standard integer, fixed-point
and floating-point representations of numbers. When the
string does not contain the period character “.” or the
exponent character ”e” (the exponent character ”@” should
be used for base > 10), the result is an integer number and
the precision argument is ignored. Otherwise, the result is
a floating-point number rounded to a given number of base
digits. C++:

x.SetTo("2.e-19", 100, 10);

Here we encounter a problem of ambiguous hexadecimal
exponent:

x.SetTo("2a8c.e2", 100, 16);

It is not clear whether the above number is in exponential
notation or not. But this is hopefully not a frequently
encountered situation. We may assume that the exponent
character for base > 10 is “@” and not ”e”.

• The same function is overloaded to construct a number
from a platform number (a 32-bit integer or a double pre-
cision value). C++:

x.SetTo(12345); y.SetTo(-0.001);

• BigNumber::ToString – Print a number to a string in a
given precision and in a given base. The precision is given
as the number of digits in the given base. The value should
be rounded to that number of significant base digits. (Inte-
gers are printed exactly, regardless of the given precision.)
C++:

x.ToString(buffer, 200, 16); // hexadecimal

x.ToString(buffer, 40, 10); // decimal

• BigNumber::Double – Obtain an approximate representa-
tion of x as double-precision value. (The conversion may
cause overflow or underflow, in which case the result is un-
defined.) C++:

double a=x.Double();

2. Basic object manipulation.

These operations, as a rule, do not need to change the numerical
value of the object.

• BigNumber::SetTo – Copy a number, x := y. This op-
eration should copy the numerical value exactly, without
change. C++:

x.SetTo(y);

• BigNumber::Equals – Compare two numbers for equality,
x = y. C++:

x.Equals(y)==true;

Yacas:

MathEquals(x,y)

The values are compared arithmetically, their internal pre-
cision may differ, and integers may be compared to floats.
Two floats are considered “equal” when their values co-
incide within their precision. It is only guaranteed that
Equals returns true for equal integers, for an integer and
a floating-point number with the same integer value, and
for two exactly bit-by-bit equal floating-point numbers.
Floating-point comparison may be unreliable due to round-
off error and particular internal representations. So it may
happen that after y:=x+1; y:=y-1; the comparison

y.Equals(x)

will return false, although such cases should be rare.

• BigNumber::IsInt – Check whether the number x is of
integer or floating type. (Both types are represented by the
same class BigNumber, and we need to be able to distinguish
them.) C++:

x.IsInt()==true;

Yacas: part of the implementation of IsInteger(x).

• BigNumber::IsIntValue – Check whether the number x

has an integer value. (Not the same as the previous func-
tion, because a floating-point type can also have an integer
value.) Always returns true on objects of integer type.
C++:

x.IsIntValue()==true;

Yacas:

FloatIsInt(x)

• BigNumber::BecomeInt, BigNumber::BecomeFloat –
Change the type of a number from integer to float without
changing the numerical value. The precision is either set
automatically (to enough digits to hold the integer), or
explicitly to a given number of bits. (Roundoff might
occur.) Change the type from float to integer, rounding
off if necessary. C++:

x.BecomeInt(); x.BecomeFloat();

x.BecomeFloat(100);

3. Basic arithmetic operations.

Note that here “precision” always means the number of signifi-
cant bits, i.e. digits in the base 2, not decimal digits.

• BigNumber::LessThan – Compare two objects, x<y. Re-
turns true if the numerical comparison holds, regardless of
the value types (integer or float). If the numbers are equal
up to their precision, the comparison returns false. C++:

35

x.LessThan(y)==true;

Yacas:

LessThan(x,y)

• BigNumber::Floor – Compute the integer part of a num-
ber, x := Floor(y). This function should round toward
algebraically smaller integers, as usual. C++:

x.Floor(y);

Yacas:

MathFloor(x)

If there are enough digits in x to compute its integer part,
then the result is an exact integer. Otherwise the floating-
point value x is returned unchanged and an error message
may be printed.

• BigNumber::GetExactBits – Report the current precision
of a number x in bits. C++:

prec=x.GetExactBits();

Yacas:

GetExactBits(x)

Every floating-point number contains information about
how many significant bits of mantissa it currently has. A
particular implementation may hold more bits for conve-
nience but the additional bits may be incorrect. [Integer
numbers are always exact and do not have a concept of pre-
cision. The function GetExactBits should not be used on
integers; it will return a meaningless result.] The precision
of a number object is changed automatically by arithmetic
operations, by conversions from strings (to the given preci-
sion), or manually by the function SetExactBits. It is not
strictly guaranteed that GetExactBits returns the number
of correct bits. Rather, this number of bits is intended as
rough lower bound of the real achieved precision. (It is dif-
ficult to accurately track the round-off errors accumulated
after many operations, without a time-consuming interval
arithmetic or another similar technique.) Note: the num-
ber of bits is a platform signed integer (C++ type long).

• BigNumber::SetExactBits – Set the precision of a number
x and truncate (or expand) it to a given floating-point pre-
cision of n bits. This function has an effect of converting
the number to the floating-point type with n significant bits
of mantissa. The BigNumber object is changed. [No effect
on integers.] Note that the Floor function is not similar
to SetExactBits because 1) Floor always converts to an
integer value while SetExactBits converts to a floating-
point value, 2) Floor always decreases the number while
SetExactBits tries to find the closest approximation. For
example, if x = −1123.38 then x.SetExactBits(1) should
return ”-1024.” which is the best one-bit floating-point
approximation. However, Floor(-1123.38) returns -1124

(the largest integer not greater than -1123.38). C++:

x.SetExactBits(300);

Yacas:

SetExactBits(x, 300)

Note: the number of bits is a platform signed integer (C++
type long).

• BigNumber::Add – Add two numbers, x := y+z, at given
precision. C++:

x.Add(y,z, 300);

Yacas:

MathAdd(x,y)

When subtracting almost equal numbers, a loss of precision
will occur. The precision of the result will be adjusted
accordingly.

• BigNumber::Negate – Negate a number, x := -y. C++:

x.Negate(y);

Yacas:

MathNegate(x)

• BigNumber::Multiply – Multiply two numbers, x := y*z,
at given precision. C++:

x.Multiply(y,z, 300);

Yacas:

MathMultiply(x,y)

• BigNumber::Divide – Divide two numbers, x := y/z, at
given precision. (Integers are divided exactly as integers
and the “precision” argument is ignored.) C++:

x.Divide(y,z, 300);

Yacas:

MathDivide(x,y)

4. Auxiliary operations.

Some additional operations useful for optimization purposes.
These operations can be efficiently implemented with a binary-
based internal representation of big numbers.

• BigNumber::IsSmall – Check whether the number x fits
into a platform type long or double. (Optimization of
comparison.) This test should helps avoid unnecessary cal-
culations with big numbers. Note that the semantics of
this operation is different for integers and for floats. An
integer is “small” only when it fits into a platform long

integer. A float is “small” when it can be approximated by
a platform double (that is, when its decimal exponent is
smaller than 1021). For example, a BigNumber representing
π to 1000 digits is ”small” because it can be approximated
by a platform float. C++:

x.IsSmall()==true;

Yacas:

MathIsSmall(x)

• BigNumber::MultiplyAdd – Multiply two numbers and add
to the third, x := x+y*z, at given precision. (Optimization
of a frequently used operation.) C++:

x.MultiplyAdd(y,z, 300);

Yacas:

MathMultiplyAdd(x,y,z)

• BigNumber::Mod – Obtain the remainder modulo an inte-
ger, x:=Mod(y,n). C++:

x.Mod(y,n);

Yacas:

MathMod(x,n)

36

(Optimization of integer division, important for number
theory applications.) The integer modulus n is a big num-
ber. The function is undefined for floating-point numbers.

• BigNumber::Sign – Obtain the sign of the number x (result
is -1, 0 or 1). (Optimization of comparison with 0.) C++:

int sign_of_x = x.Sign();

Yacas:

MathSign(x)

• BigNumber::BitCount – Obtain the integer part of the bi-
nary logarithm of the absolute value of x. For integers, this
function counts the significant bits, i.e. the number of bits
needed to represent the integer. This function is not to be
confused with the number of bits that are set to 1, some-
times called the “population count” of an integer number.
The population count of 4 (binary “100”) is 1, and the bit
count of 4 is 3.

For floating-point numbers, BitCount should return the bi-
nary exponent of the number (with sign), like the integer out-
put of the standard C function frexp. More formally: if
n = BitCount (x), and x 6= 0, then 1

2
≤ |x| · 2−n < 1. The

bit count of an integer or a floating 0 is arbitrarily defined to be
1. (Optimization of the binary logarithm.) C++:

x.BitCount();

Yacas:

MathBitCount(x)

Note: the return type of the bit count is a platform signed
integer (C++ type long).

• BigNumber::ShiftLeft, BigNumber::ShiftRight – Bit-
shift the number (multiply or divide by the n-th power of
2), x := y >> n, x := y << n. For integers, this operation
can be efficiently implemented because it has hardware sup-
port. For floats, this operation is usually also much more
efficient than multiplication or division by 2 (cf. the stan-
dard C function ldexp). (Optimization of multiplication
and division by a power of 2.) Note that the shift amount
is a platform signed integer (C++ type long). C++:

x.ShiftLeft(y, n); x.ShiftRight(y, n);

Yacas:

ShiftLeft(x,n); ShiftRight(x,n);

• BigNumber::BitAnd, BigNumber::BitOr,
BigNumber::BitXor, BigNumber::BitNot – Perform
bitwise arithmetic, like in C: x = y&z, x = y|z, x = yẑ,
x = ~y. This should be implemented only for integers.
Integer values are interpreted as bit sequences starting
from the least significant bit. (Optimization of operations
on bit streams and some arithmetic involving powers of
2.) C++:

x.BitAnd(y,z); x.BitOr(y,z);

x.BitXor(y,z); x.BitNot(y);

Yacas:

BitAnd(x,y); BitOr(y,z);

BitXor(y,z); BitNot(y);

The API includes only the most basic operations. All other
mathematical functions such as GCD, power, logarithm, cosine
and so on, can be efficiently implemented using this basic inter-
face.

Note that generally the arithmetic functions will set the type
of the resulting object to the type of the result of the operation.
For example, operations that only apply to integers (Mod, BitAnd
etc.) will set the type of the resulting object to integer if it is a
float. The results of these operations on non-integer arguments
are undefined.

7.4 Precision of arithmetic opera-
tions

All operations on integers are exact. Integers must grow or
shrink when necessary, limited only by system memory. But
floating-point numbers need some precision management.

In some arithmetic operations (add, multiply, divide) the
working precision is given explicitly. For example,

x.Add(y,z,100)

will add y to z and put the result into x, truncating it to at
most 100 bits of mantissa, if necessary. (The precision is given
in bits, not in decimal digits, because when dealing with low-
level operations it is much more natural to think in terms of
bits.) If the numbers y, z have fewer than 100 bits of mantissa
each, then their sum will not be precise to all 100 digits. That
is fine; but it is important that the sum should not contain
more than 100 digits. Floating-point values, unlike integers,
only grow up to the given number of significant bits and then
a round-off must occur. Otherwise we will be wasting a lot of
time on computations with many meaningless digits.

Automatic precision tracking

The precision of arithmetic operations on floating-point num-
bers can be maintained automatically. A rigorous way to do
it would be to represent each imprecise real number x by an
interval with rational bounds within which x is guaranteed to
be. This is usually called “interval arithmetic.” A result of an
interval-arithmetic calculation is “exact” in the sense that the
actual (unknown) number x is always within the resulting inter-
val. However, interval arithmetic is computationally expensive
and at any rate the width of the resulting interval is not guar-
anteed to be small enough for a particular application.

For the Yacas arithmetic library, a “poor man’s interval arith-
metic” is proposed where the precision is represented by the
“number of correct bits”. The precision is not tracked exactly
but almost always adequately. The purpose of this kind of rough
precision tracking is to catch a critical roundoff error or to indi-
cate an unexpected loss of precision in numerical calculations.

Suppose we have two floating-point numbers x and y and we
know that they have certain numbers of correct mantissa bits,
say m and n. In other words, x is an approximation to an
unknown real number x′ = x (1 + δ) and we know that |δ| <
2−m; and similarly y′ = y (1 + ε) with |ε| < 2−n. Here δ and ε
are the relative errors for x and y. Typically δ and ε are much
smaller than 1.

Suppose that every floating-point number knows the number
of its correct digits. We can symbolically represent such num-
bers as pairs {x,m} or {y,n}. When we perform an arithmetic
operation on numbers, we need to update the precision compo-
nent as well.

Now we shall consider the basic arithmetic operations to see
how the precision is updated.

Multiplication

37

If we need to multiply x and y, the correct answer is x′y′ but
we only know an approximation to it, xy. We can estimate
the precision by x′y′ = xy (1 + δ) (1 + ε) and it follows that
the relative precision is at most δ + ε. But we only represent
the relative errors by the number of bits. The whole idea of
the simplified precision tracking is to avoid costly operations
connected with precision. So instead of tracking the number
δ + ε exactly, we represent it roughly: either set the error of xy
to the larger of the errors of x and y, or double the error.

More formally, we have the estimates |δ| < 2−m, |ε| < 2−n

and we need a similar estimate |r| < 2−p for r = δ + ε.
If the two numbers x and y have the same number of correct

bits, we should double the error (i.e. decrease the number of
significant bits by 1). But if they don’t have the same number
of bits, we cannot really estimate the error very well. To be on
the safe side, we might double the error if the numbers x and y
have almost the same number of significant bits, and leave the
error constant if the numbers of significant bits of x and y are
very different.

The answer expressed as a formula is p = min (m,n) if
|m− n| ≥ D and p = min (m,n) − 1 otherwise. Here D is a
constant that expresses our tolerance for error. In the current
implementation, D = 1.

If one of the operands is a floating zero x={0.,m} (see below)
and x={x,n}, then p = m−BitCount (x) + 1. This is the same
formula as above, if we pretend that the bit count of {0.,m} is
equal to 1−m.

Division

Division is multiplication by the inverse number. When we take
the inverse of x (1 + δ), we obtain approximately 1

x
(1− δ). The

relative precision does not change when we take the inverse. So
the handling of precision is exactly the same as for the multi-
plication.

Addition

Addition is more complicated because the absolute rather than
the relative precision plays the main role, and because there
may be roundoff errors associated with subtracting almost equal
numbers.

Formally, we have the relative precision r of x+ y as

r =
δx+ εy

x+ y
.

We have the bounds on δ and ε:(
|δ| < 2−m, |ε| < 2−n

)
,

and we need to find a bit bound on r, i.e. an integer p such that
|r| < 2−p. But we cannot estimate p without first computing
x + y and analyzing the relative magnitude of x and y. To
perform this estimate, we need to use the bit counts of x and
y and on x + y. Let these bit counts be a, b and c, so that
|x| < 2a, |y| < 2b, and 2c−1 ≤ |x+ y| < 2c. (At first we assume
that x 6= 0, y 6= 0, and x+ y 6= 0.) Now we can estimate r as

r ≤
∣∣∣∣x · 2−mx+ y

∣∣∣∣+

∣∣∣∣y · 2−nx+ y

∣∣∣∣ ≤ 2a+1−m−c + 2b+1−n−c.

This is formally similar to multiplying two numbers with a +
1 − m − c and b + 1 − m − c correct bits. As in the case of
multiplication, we may take the minimum of the two numbers,
or double one of them if they are almost equal.

Note that there is one important case when we can estimate
the precision better than this. Suppose x and y have the same

sign; then there is no cancellation when we compute x+ y. The
above formula for r gives an estimate

r < max (|δ| , |ε|)

and therefore the precision of the result is at least p =
min (m,n).

If one of the operands is a floating zero represented by
x={0.,m} (see below), then the calculation of the error is for-
mally the same as in the case x={1.,m}. This is as if the bit
count of {0.,m} were equal to 1 (unlike the case of multiplica-
tion).

Finally, if the sum x + y is a floating zero but x 6= 0 and
y 6= 0, then it must be that a = b. In that case we represent
x+ y as {0.,p}, where p = min (m,n)− a.

Computations with a given target precision

Using these rules, we can maintain a bound on the numerical
errors of all calculations. But sometimes we know in advance
that we shall not be needing any more than a certain number of
digits of the answer, and we would like to avoid an unnecessarily
high precision and reduce the computation time. How can we
combine an explicitly specified precision, for example, in the
function

x.Add(y,z,100)

with the automatic precision tracking?
We should truncate one or both of the arguments to a smaller

precision before starting the operation. For the multiplication
as well as for the addition, the precision tracking involves a
comparison of two binary exponents 2−g and 2−h to obtain an
estimate on 2−g + 2−h. Here g and h are some integers that
are easy to obtain during the computation. For instance, the
multiplication involves g = m and h = n. This comparison will
immediately show which of the arguments dominates the error.

The ideal situation would be when one of these exponentials
is much smaller than the other, but not very much smaller (that
would be a waste of precision). In other words, we should aim
for |g − h| < 8 or so, where 8 is the number of guard bits we
would like to maintain. (Generally it is a good idea to have at
least 8 guard bits; somewhat more guard bits do not slow down
the calculation very much, but 200 guard bits would be surely
an overkill.) Then the number that is much more precise than
necessary can be truncated.

For example, if we find that g = 250 and h = 150, then we
can safely truncate x to 160 bits or so; if, in addition, we need
only 130 bits of final precision, then we could truncate both x
and y to about 140 bits.

Note that when we need to subtract two almost equal num-
bers, there will be a necessary loss of precision, and it may be
impossible to decide on the target precision before performing
the subtraction. Therefore the subtraction will have to be per-
formed using all available digits.

The floating zero

There is a difference between an integer zero and a floating-point
zero. An integer zero is exact, so the result of 0*1.1 is exactly
zero (also an integer). However, x:=1.1-1.1 is a floating-point
zero (a ”floating zero” for short) of which we can only be sure
about the first digit after the decimal point, i.e. x=0.0. The
number x might represent 0.01 or -0.02 for all we know.

It is impossible to track the relative precision of a floating
zero, but it is possible to track the absolute precision. Suppose
we store the bit count of the absolute precision, just as we store
the bit count of the relative precision with nonzero floats. Thus

38

we represent a floating zero as a pair {0.,n} where n is an
integer, and the meaning of this is a number between −2−n and
2−n.

We can now perform some arithmetic operations on the float-
ing zero. Addition and multiplication are handled similarly to
the non-zero case, except that we interpret n as the absolute
error rather than the relative error. This does not present any
problems. For example, the error estimates for addition is the
same as if we had a number 1 with relative error 2−n instead of
{0.,n}. With multiplication of {x,m} by {0.,n}, the result is
again a floating zero {0.,p}, and the new estimate of absolute
precision is p = n− BitCount (x) + 1.

The division by the floating zero, negative powers, and the
logarithm of the floating zero are not representable in our arith-
metic because, interpreted as intervals, they would correspond
to infinite ranges. The bit count of the floating zero is there-
fore undefined. However, we can define a positive power of the
floating zero (the result is again a floating zero).

The sign of the floating zero is defined as (integer) 0. (Then
we can quickly check whether a given number is a zero.)

Comparison of floats

Suppose we need to compare floating-point numbers x and y. In
the strict mathematical sense this is an unsolvable problem be-
cause we may need in principle arbitrarily many digits of x and
y before we can say that they are equal. In other words, “zero-
testing is uncomputable”. So we need to relax the mathematical
rigor somewhat.

Suppose that x=12.0 and y=12.00. Then in fact x might
represent a number such as 12.01, while y might represent
11.999. There may be two approaches: first, “12.0” is not equal
to “12.00” because x and y might represent different numbers.
Second, ”12.0” is equal to “12.00” because x and y might also
represent equal numbers. A logical continuation of the first ap-
proach is that “12.0” is not even equal to another copy of “12.0”
because they might represent different numbers, e.g. if we com-
pute x=6.0+6.0 and y=24.0/2.0, the roundoff errors might be
different.

Here is an illustration in support for the idea that the com-
parison 12.0=12 should return True. Suppose we are writing an
algorithm for computing the power, xŷ. This is much faster if y
is an integer because we can use the binary squaring algorithm.
So we need to detect whether y is an integer. Now suppose we
are given x=13.3 and y=12.0. Clearly we should use the integer
powering algorithm, even though technically y is a float. (To
be sure, we should check that the integer powering algorithm
generates enough significant digits.)

However, the opposite approach is also completely possible:
no two floating-point numbers should be considered equal, ex-
cept perhaps when one is a bit-for-bit exact copy of the other
and when we haven’t yet performed any arithmetic on them.

It seems that no algorithm really needs a test for equality of
floats. The two useful comparisons on floats x, y seem to be the
following:

1. whether |x− y| < ε where ε is a given floating-point num-
ber representing the precision,

2. whether x is positive, negative, or zero.

Given these predicates, it seems that any floating-point algo-
rithm can be implemented just as efficiently as with any “rea-
sonable” definition of the floating-point equality.

How to increase of the working precision

Suppose that in a Yacas session we declare
Builtin’Precision’Set(5), write x:=0.1, and then in-
crease precision to 10 digits. What is x now? There are several
approaches:

1) The number x stays the same but further calculations are
done with 10 digits. In terms of the internal binary represen-
tation, the number is padded with binary zeros. This means
that now e.g. 1+x will not be equal to 1.1 but to something like
1.100000381 (to 10 digits). And actually x itself should evalu-
ate to 0.1000003815 now. This was 0.1 to 5 digits but it looks
a little different if we print it to 10 digits. (A “binary-padded
decimal”.)

This problem may look horrible at first sight – “how come
I can’t write 0.1 any more??” – but this seems so because we
are used to calculations in decimals with a fixed precision, and
the operation such as “increase precision by 10 digits” is largely
unfamiliar to us except in decimals. This seems to be mostly a
cosmetic problem. In a real calculation, we shouldn’t be writing
“0.1” when we need an exact number 1/10. When we request
to increase precision in the middle of a calculation, this mistake
surfaces and gives unexpected results.

2) When precision is increased, the number x takes its dec-
imal representation, pads it with zeros, and converts back to
the internal representation, just so that the appearance of
“1.100000381” does not jar our eyes. (Note that the number
x does not become ”more precise” if we pad it with decimal ze-
ros instead of binary zeros, unless we made a mistake and wrote
“0.1” instead an exact fraction 1/10.)

With this approach, each number x that doesn’t currently
have enough digits must change in a complicated way. This will
mean a performance hit in all calculations that require dynami-
cally changing precision (Newton’s method and some other fast
algorithms require this). In these calculations, the roundoff er-
ror introduced by “1.100000381” is automatically compensated
and the algorithm will work equally well no matter how we ex-
tend x to more digits; but it’s a lot slower to go through the
decimal representation every time.

3) The approach currently being implemented in Yacas is
a compromise between the above two. We distinguish number
objects that were given by the user as decimal strings (and not
as results of calculations), for instance x:=1.2, from number ob-
jects that are results of calculations, for instance y:=1.2*1.4.
Objects of the first kind are interpreted as exact rational num-
bers given by a decimal fraction, while objects of the second
kind are interpreted as inexact floating-point numbers known
to a limited precision. Suppose x and y are first assigned as in-
dicated, with the precision of 5 digits each, then the precision is
increased to 10 digits and x and y are used in some calculation.
At this point x will be converted from the string representation
”1.2” to 10 decimal digits, effectively making 1.2 a shorthand
for 1.200000000. But the value of y will be binary-padded in
some efficient way and may be different from 1.680000000.

In this way, efficiency is not lost (there are no repeated con-
versions from binary to decimal and back), and yet the cos-
metic problem of binary-padded decimals does not appear. An
explicitly given decimal string such as “1.2” is interpreted as
a shorthand for 1.2000... with as many zeroes as needed for
any currently selected precision. But numbers that are results
of arithmetic operations are not converted back to a decimal
representation for zero-padding. Here are some example calcu-
lations:

In> Builtin’Precision’Set(5)

Out> True

39

In> x:=1.2

Out> 1.2

In> y:=N(1/3)

Out> 0.33333

The number y is a result of a calculation and has a limited
precision. Now we shall increase the precision:

In> Builtin’Precision’Set(20)

Out> True

In> y

Out> 0.33333

The number y is printed with 5 digits, because it knows that it
has only 5 correct digits.

In> y+0

Out> 0.33333333325572311878

In a calculation, y was binary-padded, so the last digits are
incorrect.

In> x+0

Out> 1.2

However, x has not been padded and remains an ”exact” 1.2.

In> z:=y+0

Out> 0.33333333325572311878

In> Builtin’Precision’Set(40)

Out> True

In> z

Out> 0.33333333325572311878

Now we can see how the number z is padded again:

In> z+0

Out> 0.33333333325572311878204345703125

The meaning of the Builtin’Precision’Set() call

The user calls Builtin’Precision’Set() to specify the
”wanted number of digits.” We could use different interpre-
tations of the user’s wish: The first interpretation is that
Builtin’Precision’Set(10) means ”I want all answers of all
calculations to contain 10 correct digits”. The second interpre-
tation is “I want all calculations with floating-point numbers
done using at least 10 digits”.

Suppose we have floating-point numbers x and y, known only
to 2 and 3 significant digits respectively. For example, x=1.6

and y=2.00. These x and y are results of previous calculations
and we do not have any more digits than this. If we now say

Builtin’Precision’Set(10);

x*y;

then clearly the system cannot satisfy the first interpretation
because there aren’t enough digits of x and y to find 10 digits
of xy. But we can satisfy the second interpretation, even if we
print “3.2028214767” instead of the expected 3.2. The garbage
after the third digit is unavoidable and harmless unless our cal-
culation really depends on having 10 correct digits of xy. The
garbage digits can be suppressed when the number is printed,
so that the user will never see them. But if our calculation de-
pends on the way we choose the extra digits, then we are using
a bad algorithm.

The first interpretation of Builtin’Precision’Set() is only
possible to satisfy if we are given a self-contained calculation
with integer numbers. For example,

N(Sin(Sqrt(3/2)-10^(20)), 50)

This can be computed to 50 digits with some effort, but only if
we are smart enough to use 70 digits in the calculation of the
argument of Sin().) (This level of smartness is currently not
implemented in the N function.) The result of this calculation
will have 50 digits and not a digit more; we cannot put the result
inside another expression and expect full precision in all cases.
This seems to be a separate task, “compute something with n

digits no matter what”, and not a general routine to be followed
at all times.

So it seems that the second interpretation of
Builtin’Precision’Set(n), namely: “please use n digits
in all calculations now”, is more sensible as a general-purpose
prescription.

But this interpretation does not mean that all numbers will
be printed with n digits. Let’s look at a particular case (for
simplicity we are talking about decimal digits but in the im-
plementation they will be binary digits). Suppose we have x

precise to 10 digits and y precise to 20 digits, and the user says
Builtin’Precision’Set(50) and z:=1.4+x*y. What happens
now in this calculation? (Assume that x and y are small num-
bers of order 1; the other cases are similar.)

First, the number “1.4” is now interpreted as being precise
to 50 digits, i.e. “1.4000000...0” but not more than 50 digits.

Then we compute x*y using their internal representations.
The result is good only to 10 digits, and it knows this. We do
not compute 50 digits of the product x*y, it would be pointless
and a waste of time.

Then we add x*y to 1.4000...0. The sum, however, will be
precise only to 10 digits. We can do one of the two things now:
(a) we could pad x*y with 40 more zero digits and obtain a
50-digit result. However, this result will only be correct to 10
digits. (b) we could truncate 1.4 to 10 digits (1.400000000) and
obtain the sum to 10 digits. In both cases the result will “know”
that it only has 10 correct digits.

It seems that the option (b) is better because we do not waste
time with extra digits.

The result is a number that is precise to 10 digits. However,
the user wants to see this result with 50 digits. Even if we chose
the option (a), we would have had some bogus digits, in effect,
40 digits of somewhat random round-off error. Should we print
10 correct digits and 40 bogus digits? It seems better to print
only 10 correct digits in this case.

If we choose this route, then the only effect of
Builtin’Precision’Set(50) will be to interpret a literal con-
stant 1.4 as a 50-digit number. All other numbers already know
their real precision and will not invent any bogus digits.

In some calculations, however, we do want to explicitly extend
the precision of a number to some more digits. For example, in
Newton’s method we are given a first approximation x0 to a root
of f (x) = 0 and we want to have more digits of that root. Then
we need to pad x0 with some more digits and re-evaluate f (x0)
to more digits (this is needed to get a better approximation
to the root). This padding operation seems rather special and
directed at a particular number, not at all numbers at once. For
example, if f (x) itself contains some floating-point numbers,
then we should be unable to evaluate it with higher precision
than allowed by the precision of these numbers. So it seems that
we need access to these two low-level operations: the padding
and the query of current precision. The proposed interface is
GetExactBits(x) and SetExactBits(x,n). These operations
are directed at a particular number object x.

Summary of arbitrary-precision semantics

1. All integers are always exact; all floats carry an error es-

40

timate, which is stored as the number of correct bits of
mantissa they have. Symbolically, each float is a pair {x,n}
where x is a floating-point value and n is a (platform) inte-
ger value. If x 6= 0, then the relative error of x is estimated
as 2−n. A number {x,n} with x 6= 0 stands for an in-
terval between x

(
1− 2−n

)
and x

(
1 + 2−n

)
. This integer

n is returned by GetExactBits(x) and can be modified
by SetExactBits(x,n) (see below). Error estimates are
not guaranteed to be correct in all cases, but they should
give sensible lower bounds on the error. For example,
if {x,n}={123.456,3}, the error estimate says that x is
known to at most 3 bits and therefore the result of 1

x−123

is completely undefined becase x cannot be distinguished
from 0. The purpose of the precision tracking mechanism is
to catch catastrophic losses of numerical precision in cases
like these, not to provide a precise round-off error esti-
mates. In most cases it is better to let the program con-
tinue even with loss of precision than have it aborted due
to a false round-off alarm.

2. When printing a float, we print only as many digits as
needed to represent the float value to its current precision.
When reading a float, we reserve enough precision to pre-
serve all given digits.

3. The number 0 is either an integer 0 or a floating-point 0.

(a “floating zero” for short). For a floating zero, the “num-
ber of exact bits” means the absolute error, not the relative
error. It means that the symbolic pair {0.,n} represents
all number x in the interval −2−n ≤ x ≤ 2−n. A floating
zero can be obtained either by subtracting almost equal
numbers or by squaring a very imprecise number. In both
cases the possible result can be close to zero and the pre-
cision of the initial numbers is insufficient to distinguish it
from zero.

4. An integer and a float are equal only if the float contains
this integer value within its precision interval. Two floats
are equal only if their values differ by less than the largest of
their error estimates (i.e. if their precision intervals inter-
sect). In particular, it means that an integer zero is always
equal to any floating zero, and that any two floating zeros
are equal. It follows that if x=y, then for any floating zeros
x+0.=y+0. and x-y=0. as well. (So this arithmetic is not
obviously inconsistent.)

5. The Yacas function IsInteger(x) returns True if x has
integer type; IsIntValue(x) returns True if x has either
integer type or floating type but an integer value within its
precision. For example,

IsInteger(0) =True

IsIntValue(1.)=True

IsInteger(1.) =False

6. The Yacas function Builtin’Precision’Set(n) sets a
global parameter that controls the precision of newly cre-
ated floats. It does not modify previously created floating-
point numbers and has no effect on copying floats or on any
integer calculations. New float objects can be created in
three ways (aside from simple copying from other floats):
from literal strings, from integers, and from calculations
with other floats. For example,

x:=1.33;

y:=x/3;

Here x is created from a literal string "1.33", a temporary
float is created from an integer 3, and y is created as a result
of division of two floats. Converting an integer to a float is

similar to converting from a literal string representing the
integer. A new number object created from a literal string
must have at least as many bits of mantissa as is required
to represent the value given by the string. The string might
be very long but we want to retain all information from a
string, so we may have to make the number much more pre-
cise than currently declared with Builtin’Precision’Set.
2 But if the necessary number of digits to represent the
string is less than n, then the new number object will have
the number of bits that corresponds to n decimal digits.
Thus, in creating objects from strings or from integers,
Builtin’Precision’Set sets the minimum precision of the
resulting floating-point number. On the other hand, a new
number object created from a calculation will already have
an error estimate and will “know” its real precision. But
a directive Builtin’Precision’Set(n) indicates that we
are only interested in n digits of a result. Therefore, a
calculation should not generate more digits than n, even
if its operands have more digits. Thus, in creating objects
from operations, Builtin’Precision’Set sets the maxi-
mum precision of the resulting floating-point number.

7. SetExactBits(x,n) will make the number x think that it
has n exact bits. If x had more exact bits before, then it
may be rounded. If x had fewer exact bits before, then
it may be padded. (The way the padding is done is up
to the internal representation, but the padding operation
must be efficient and should not change the value of the
number beyond its original precision.)

8. All arithmetic operations and all kernel-supported numer-
ical function calls are performed with precision estimates,
so that all results know how precise they really are. Then
in most cases it will be unnecessary to call SetExactBits
or GetExactBits explicitly. This will be needed only in cer-
tain numerical applications that need to control the work-
ing precision for efficiency.

Formal definitions of precision tracking

Here we shall consider arithmetic operations on floats x and
y, represented as pairs {x,m} and {y,n}. The result of the
operation is z, represented as a pair {z,p}. Here x, y, z are
floats and m, n, p are integers.

We give formulae for p in terms of x, y, m, and n. Sometimes
the bit count of a number x is needed; it is denoted B (x) for
brevity.

Formal definitions

A pair {x,m} where x is a floating-point value and m is an inte-
ger value (the ”number of correct bits”) denotes a real number
between x

(
1− 2−m

)
and x

(
1 + 2−m

)
when x 6= 0, and a real

number between −2−m and 2−m when x = 0 (a “floating zero”).
The bit count B (x) is an integer function of x defined for real

x 6= 0 by

B (x) ≡ 1 +

⌊
ln |x|
ln 2

⌋
.

This function also satisfies

2B(x)−1 ≤ |x| < 2B(x).

For example, B
(
1
4

)
= −1, B (1) = B

(
3
2

)
= 1, B (4) = 3.

The bit count of zero is arbitrarily set to 1. For integer x, the

2Note that the argument n of Builtin’Precision’Set(n)

means decimal digits, not bits. This is more convenient for
Yacas sessions.

41

value B (x) is the number of bits needed to write the binary
representation of x.

The bit count function can be usually computed in constant
time because the usual representation of long numbers is by
arrays of platform integers and a binary exponent. The length
of the array of digits is usually available at no computational
cost.

The absolute error ∆x of {x,n} is of order |x| · 2−n. Given
the bit count of x, this can be estimated from as

2B(x)−n−1 ≤ ∆x < 2B(x)−n.

So the bit count of ∆x is B (x)− n.

Floor()

The function Floor({x,m}) gives an integer result if there
are enough digits to determine it exactly, and otherwise re-
turns the unchanged floating-point number. The condition for
Floor({x,m}) to give an exact result is

m ≥ B (x) .

BecomeFloat()

The function BecomeFloat(n) will convert an integer to a float
with at least n digits of precision. If x is the original integer
value, then the result is {x,p} where p = max (n,B (x)).

Underflow check

It is possible to have a number {x,n} with x 6= 0 such that
{0.,m}={x,n} for some m. This would mean that the float-
ing zero {0.,m} is not precise enough to be distinguished from
{x,n}, i.e.

|x| < 2−m.

This situation is normal. But it would be meaningless to have a
number {x,n} with x 6= 0 and a precision interval that contains
0. Such {x,n} will in effect be equal to any zero {0.,m}, because
we do not know enough digits of x to distinguish {x,n} from
zero.

From the definition of {x,n} with x 6= 0 it follows that 0
can be within the precision interval only if n ≤ −1. Therefore,
we should transform any number {x,n} such that x 6= 0 and
n ≤ −1 into a floating zero {0.,p} where

p = n−B (x) .

(Now it is not necessarily true that p ≥ 0.) This check should
be performed at any point where a new precision estimate n is
obtained for a number x and where a cancellation may occur
(e.g. after a subtraction). Then we may assume that any given
float is already reduced to zero if possible.

Equals()

We need to compare {x,m} and {y,n}.
First, we can quickly check that the values x and y have the

same nonzero signs and the same bit counts, B (x) = B (y). If
x > 0 and y < 0 or vice versa, or if B (x) = B (y), then the two
numbers are definitely unequal. We can also check whether both
x = y = 0; if this is the case, then we know that {x,m}={y,n}
because any two zeros are equal.

However, a floating zero can be sometimes equal to a
nonzero number. So we should now exclude this possibility:
{0.,m}={y,n} if and only if |y| < 2−m. This condition is equiv-
alent to

B (y) < −m.

If these checks do not provide the answer, the only possibility
left is when x 6= 0 and y 6= 0 and B (x) = B (y).

Now we can consider two cases: (1) both x and y are floats,
(2) one is a float and the other is an integer.

In the first case, {x,m}={y,n} if and only if the following
condition holds:

|x− y| < max
(
2−m |x| , 2−n |y|

)
.

This is a somewhat complicated condition but its evaluation
does not require any long multiplications, only long additions,
bit shifts and comparisons.

It is now necessary to compute x−y (one long addition); this
computation needs to be done with min (m,n) bits of precision.

After computing x−y, we can avoid the full evaluation of the
complicated condition by first checking some easier conditions
on x− y. If x− y = 0 as floating-point numbers (“exact cancel-
lation”), then certainly {x,m}={y,n}. Otherwise we can assume
that x− y 6= 0 and check:

• A sufficient (but not a necessary) condition: if B (x− y) ≤
B (x)−min (m,n)− 1 then {x,m}={y,n}.

• A necessary (but not a sufficient) condition is: if
B (x− y) > B (x)−min (m,n) + 1 then {x,m}!={y,n}.

If neither of these conditions can give us the answer, we have
to evaluate the full condition by computing |x|·2−m and |x|·2−m
and comparing with |x− y|.

In the second case, one of the numbers is an integer x and the
other is a float {y,n}. Then x={y,n} if and only if

|x− y| < 2−n |y| .

For the computation of x− y, we need to convert x into a float
with precision of n digits, i.e. replace the integer x by a float
{x,n}. Then we may use the procedure for the first case (two
floats) instead of implementing a separate comparison procedure
for integers.

LessThan()

If {x,m}={y,n} according to the comparison function Equals(),
then the predicate LessThan is false. Otherwise it is true if and
only if x < y as floats.

IsIntValue()

To check whether {x,n} has an integer value within its preci-
sion, we first need to check that {x,n} has enough digits to
compute bxc=Floor(x) accurately. If not (if n < B (x)), then
we conclude that x has an integer value. Otherwise we compute
y ≡ x−bxc as a float value (without precision control) to n bits.
If y is exactly zero as a float value, then x has an integer value.
Otherwise {x,n} has an integer value if and only if B (y) < −n.

This procedure is basically the same as comparing {x,n} with
Floor(x).

Sign()

The sign of {x,n} is defined as the sign of the float value x.
(The number {x,n} should have been reduced to a floating zero
if necessary.)

Addition and subtraction (Add, Negate)

We need to add {x,m} and {y,n} to get the result {z,p}. Sub-
traction is the same as addition, except we negate the second
number. When we negate a number, its precision never changes.

First consider the case when x+ y 6= 0.

42

If x is zero, i.e. {0.,m} (but x + y 6= 0), then the situation
with precision is the same as if x were {1.,m}, because then the
relative precision is equal to the absolute precision. In that case
we take the bit count of x as B (0) = 1 and proceed by the same
route.

First, we should decide whether it is necessary to add the
given numbers. It may be unnecessary if e.g. x+ y ≈ x within
precision of x (we may say that a “total underflow” occurred
during addition). To check for this, we need to estimate the
absolute errors of x and y:

2B(x)−m−1 ≤ ∆x < 2B(x)−m,

2B(y)−n−1 ≤ ∆y < 2B(y)−n.

Addition is not necessary if |x| ≤ ∆y or if |y| ≤ ∆x. Since we
should rather perform an addition than wrongly dismiss it as
unnecessary, we should use a sufficient condition here: if

B (x) ≤ B (y)− n− 1

then we can neglect x and set z = y, p = n −
Dist (B (x) , B (y)− n− 1). (We subtract one bit from the pre-
cision of y in case the magnitude of x is close to the absolute
error of y.) Also, if

B (y) ≤ B (x)−m− 1

then we can neglect y and set z = x, p = m −
Dist (B (y) , B (x)−m− 1).

Suppose none of these checks were successful. Now, the float
value z = x+ y needs to be calculated. To find it, we need the
target precision of only

1 + max (B (x) , B (y))−max (B (x)−m,B (y)− n)

bits. (An easier upper bound on this is 1 + max (m,n) but this
is wasteful when x and y have very different precisions.)

Then we compute B (z) and determine the precision p as

p = min (m−B (x) , n−B (y)) +B (z)

−1−Dist (m−B (x) , n−B (y)) ,

where the auxiliary function Dist (a, b) is defined as 0 when
|a− b| > 2 and 1 otherwise. 3

In the case when x and y have the same sign, we have a
potentially better estimate p = min (m,n). We should take
this value if it is larger than the value obtained from the above
formula.

Also, the above formula is underestimating the precision of
the result by 1 bit if the result and the absolute error are dom-
inated by one of the summands. In this case the absolute error
should be unchanged save for the Dist term, i.e. the above for-
mula needs to be incremented by 1. The condition for this is
B (x) > B (y) and B (x) − m > B (y) − n, or the same for y
instead of x.

The result is now {z,p}.
Note that the obtained value of p may be negative (total

underflow) even though we have first checked for underflow. In
that case, we need to transform {z,p} into a floating zero, as
usual.

Now consider the case when z ≡ x+ y = 0.
This is only possible when B (x) = B (y). Then the result is

{0.,p} where p is found as

p = 1 + min (m,n)−B (x)−Dist (m,n) .

3The definition of Dist (a, b) is necessarily approximate; if we re-
place 2 by a larger number, we shall be overestimating the error in
more cases.

Note that this is the same formula as in the general case, if we
define B (z) = B (0) ≡ 1. Therefore with this definition of the
bit count one can use one formula for the precision of addition
in all cases.

If the addition needs to be performed with a given maximum
precision P , and it turns out that p > P , then we may truncate
the final result to P digits and set its precision to P instead.
(It is advisable to leave a few bits untruncated as guard bits.)
However, the first operation z:=x+y must be performed with
the precision specified above, or else we run the danger of losing
significant digits of z.

Adding integers to floats

If an integer x needs to be added to a float {y,n}, then we
should formally use the same procedure as if x had infinitely
many precise bits. In practice we can take some shortcuts.

It is enough to convert the integer to a float {x,m} with a
certain finite precision m and then follow the general procedure
for adding floats. The precision m must be large enough so that
the absolute error of {x,m} is smaller than the absolute error of
{y,n}: B (x)−m ≤ B (y)− n− 1, hence

m ≥ 1 + n+B (x)−B (y) .

In practice we may allow for a few guard bits over the minimum
m given by this formula.

Sometimes the formula gives a negative value for the min-
imum m; this means underflow while adding the integer (e.g.
adding 1 to 1.11e150). In this case we do not need to perform
any addition at all.

Multiplication

We need to multiply {x,m} and {y,n} to get the result {z,p}.
First consider the case when x 6= 0 and y 6= 0. The resulting

value is z = xy and the precision is

p = min (m,n)−Dist (m,n) .

If one of the numbers is an integer x, and the other is a float
{y,n}, it is enough to convert x to a float with somewhat more
than n bits, e.g. {x,n+3}, so that the Dist function does not
decrement the precision of the result.

Now consider the case when {x,m}={0,m} but y 6= 0. The
result z = 0 and the resulting precision is

p = m−B (y) + 1.

Finally, consider the case when {x,m}={0,m} and
{y,n}={0,n}. The result z = 0 and the resulting preci-
sion is

p = m+ n.

The last two formulae are the same if we defined the bit count
of {0.,m} as 1−m. This differs from the “standard” definition
of B (0) = 1. (The “standard” definition is convenient for the
handling of addition.) With this non-standard definition, we
may use the unified formula

p = 2−B (x)−B (y)

for the case when one of x, y is a floating zero.
If the multiplication needs to be performed to a given target

precision P which is larger than the estimate p, then we can
save time by truncating both operands to P digits before per-
forming the multiplication. (It is advisable to leave a few bits
untruncated as guard bits.)

43

Division

Division is handled essentially in the same way as multiplication.
The relative precision of x/y is the same as the relative precision
of x*y as long as both x 6= 0 and y 6= 0.

When x = 0 and y 6= 0, the result of division {0.,m}/{y,n}
is a floating zero {0.,p} where p = m + B (y) − 1. When x is
an integer zero, the result is also an integer zero.

Division by an integer zero or by a floating zero is not per-
mitted. The code should signal a zero division error.

ShiftLeft(), ShiftRight()

These operations efficiently multiply a number by a positive or
negative power of 2. Since 2 is an exact integer, the precision
handling is similar to that of multiplication of floats by integers.

If the number {x,n} is nonzero, then only x changes by shift-
ing but n does not change; if {x,n} is a floating zero, then x does
not change and n is decremented (ShiftLeft) or incremented
(ShiftRight) by the shift amount:

{x, n} << s = {x<<s, n};

{0.,n} << s = {0., n-s};

{x, n} >> s = {x>>s, n};

{0.,n} >> s = {0., n+s};

7.5 Implementation notes

Large exponents

The BigNumber API does not support large exponents for
floating-point numbers. A floating-point number x is equiva-
lent to two integers M , N such that x = M · 2N . Here M is the
(denormalized) mantissa and N is the (binary) exponent. The
integer M must be a “big integer” that may represent thousands
of significant bits. But the exponent N is a platform signed in-
teger (C++ type long) which is at least 23̂1, allowing a vastly
larger range than platform floating-point types. One would ex-
pect that this range of exponents is enough for most real-world
applications. In the future this limitation may be relaxed if one
uses a 64-bit platform. (A 64-bit platform seems to be a better
choice for heavy-duty multiple-precision computations than a
32-bit platform.) However, code should not depend on having
64-bit exponent range.

We could have implemented the exponent N as a big integer
but this would be inefficient most of the time, slowing down the
calculations. Arithmetic with floating-point numbers requires
only very simple operations on their exponents (basically, addi-
tion and comparisons). These operations would be dominated
by the overhead of dealing with big integers, compared with
platform integers.

A known issue with limited exponents is the floating-point
overflow and exponent underflow. (This is not the same un-
derflow as with adding 1 to a very small number.) When the
exponent becomes too large to be represented by a platform
signed integer type, the code must signal an overflow error (e.g.
if the exponent is above 231) or an underflow error (e.g. if the
exponent is negative and below −231).

Library versions of mathematical functions

It is usually the case that a multiple-precision library imple-
ments some basic mathematical functions such as the square
root. A library implementation may be already available and
more efficient than an implementation using the API of the
wrapper class BigNumber. In this case it is desirable to wrap

the library implementation of the mathematical function, rather
than use a suboptimal implementation. This could be done in
two ways.

First, we recognize that we shall only have one particular
numerical library linked with Yacas, and we do not have to
compile our implementation of the square root if this library
already contains a good implementation. We can use conditional
compilation directives (#ifdef) to exclude our square root code
and to insert a library wrapper instead. This scheme could
be automated, so that appropriate #defines are automatically
created for all functions that are already available in the given
multiple-precision library, and the corresponding Yacas kernel
code that uses the BigNumber API is automatically replaced by
library wrappers.

Second, we might compile the library wrapper as a plugin,
replacing the script-level square root function with a plugin-
supplied function. This solution is easier in some ways because it
doesn’t require any changes to the Yacas core, only to the script
library. However, the library wrapper will only be available to
the Yacas scripts and not to the Yacas core functions. The
basic assumption of the plugin architecture is that plugins can
provide new external objects and functions to the scripts, but
plugins cannot modify anything in the kernel. So plugins can
replace a function defined in the scripts, but cannot replace
a kernel function. Suppose that some other function, such as
a computation of the elliptic integral which heavily uses the
square root, were implemented in the core using the BigNumber

API. Then it will not be able to use the square root function
supplied by the plugin because it has been already compiled into
the Yacas kernel.

Third, we might put all functions that use the basic API
(MathSqrt, MathSin etc.) into the script library and not into the
Yacas kernel. When Yacas is compiled with a particular numer-
ical library, the functions available from the library will also be
compiled as the kernel versions of MathSqrt, MathPower and so
on (using conditional compilation or configured at build time).
Since Yacas tries to call the kernel functions before the script
library functions, the available kernel versions of MathSqrt etc.
will supersede the script versions, but other functions such as
BesselJ will be used from the script library. The only drawback
of this scheme is that a plugin will not be able to use the faster
versions of the functions, unless the plugin was compiled specif-
ically with the requirement of the particular numerical library.

So it appears that either the first or the third solution is
viable.

Converting from bits to digits and back

One task frequently needed by the arithmetic library is to con-
vert a precision in (decimal) digits to binary bits and back.
(We consider the decimal base to be specific; the same con-
siderations apply to conversions between any other bases.)
The kernel implements auxiliary routines bits to digits and
digits to bits for this purpose.

Suppose that the mantissa of a floating-point number is
known to d decimal digits. It means that the relative error is
no more than 0.5 · 10−d. The mantissa is represented internally
as a binary number. The number b of precise bits of mantissa
should be determined from the equation 10−d = 2−b, which
gives b = d ln 10

ln 2
.

One potential problem with the conversions is that of incor-
rect rounding. It is impossible to represent d decimal digits
by some exact number b of binary bits. Therefore the actual
value of b must be a little different from the theoretical one.
Then suppose we perform the inverse operation on b to obtain

44

the corresponding number of precise decimal digits; there is a
danger that we shall obtain a number d′ that is different from
d.

To avoid this danger, the following trick is used. The binary
base 2 is the least of all possible bases, so successive powers of 2
are more frequent than successive powers of 10 or of any other
base. Therefore for any power of 10 there will be a unique power
of 2 that is the first one above it.

The recipe to obtain this power of 2 is simple: one should
round d ln 10

ln 2
upwards using the Ceil function, but b ln 2

ln 10
should

be rounded downwards using the Floor function.

This procedure will make sure that the number of bits b is
high enough to represent all information in the d decimal digits;
at the same time, the number d will be correctly restored from b.
So when a user requests d decimal digits of precision, Yacas may
simply compute the corresponding value of b and store it. The
precision of b digits is enough to hold the required information,
and the precision d can be easily computed given b.

The internal storage of BigNumber objects

An object of type BigNumber represents a number (and contains
all information relevant to the number), and offers an interface
to operations on it, dispatching the operations to an underlying
arbitrary precision arithmetic library.

Higher up, Yacas only knows about objects derived from
LispObject. Specifically, there are objects of class LispAtom

which represent an atom.

Symbolic and string atoms are uniquely represented by the re-
sult returned by the String() method. For number atoms, there
is a separate class, LispNumber. Objects of class LispNumber

also have a String() method in case a string representation of
a number is needed, but the main uniquely identifying piece
of information is the object of class BigNumber stored inside a
LispNumber object. This object is accessed using the Number()

method of class LispNumber.

The life cycle of a LispNumber is as follows:

1. A LispNumber can be born when the parser reads in a nu-
meric atom. In such a case an object of type LispNumber

is created instead of the LispAtom. The LispNumber con-
structor stores the string representation but does not yet
create an object of type BigNumber from the string rep-
resentation. The BigNumber object is later automatically
created from the string representation. This is done by the
Number(precision) method the first time it is requested.
String conversion is deferred to save time when reading
scripts.

2. Suppose the Number method is called; then a BigNumber

object will be created from the string representation, using
the current precision. This is where the string conversion
takes place. If later the precision is increased, the string
conversion will be performed again. This allows to hold a
number such as 1.23 and interpret it effectively as an exact
rational 123/100.

3. For an arithmetic calculation, say addition, two arguments
are passed in, and their internal objects should be of class
LispNumber, so that the function doing the addition can get
at the BigNumber objects by calling the Number() method.
[This method will not attempt to create a number from
the string representation if a numerical representation is
already available.] The function that performs the arith-
metic then creates a new BigNumber, stores the result of
the calculation in it, and creates a new LispNumber by
constructing it with the new BigNumber. The result is a

LispNumber with a BigNumber inside it but without any
string representation. Other operations can proceed to use
this BigNumber stored inside the LispNumber. This is in
effect the second way a LispNumber can be born. Since
the string representation is not available in this case, no
string conversions are performed any more. If precision is
increased, there is no way to obtain any more digits of the
number.

4. Right at the end, when a result needs to be printed to
screen, the printer will call the String() method of the
LispNumber object to get a string representation. The ob-
tained (decimal) string representation of the number is also
stored in the LispNumber, to avoid repeated conversions.

In order to fully support the LispNumber object, the function
in the kernel that determines if two objects are the same needs to
know about LispNumber. This is required to get valid behaviour.
Pattern matching for instance uses comparisons of this type, so
comparisons are performed often and need to be efficient.

The other functions working on numbers can, in principle,
call the String() method, but that induces conversions from
BigNumber to string, which are relatively expensive operations.
For efficiency reasons, the functions dealing with numeric input
should call the Number() method, operate on the BigNumber re-
turned, and return a LispNumber constructed with a BigNumber.
A function can call String() and return a LispNumber con-
structed with a string representation, but it will be less efficient.

Precision tracking inside LispNumber

There are various subtle details when dealing with precision. A
number gets constructed with a certain precision, but a higher
precision might be needed later on. That is the reason there is
the aPrecision argument to the Number() method.

When a BigNumber is constructed from a decimal string, one
has to specify a desired precision (in decimal digits). Internally,
BigNumber objects store numbers in binary and will allocate
enough bits to cover the desired precision. However, if the given
string has more digits than the given precision, the BigNumber

object will not truncate it but will allocate more bits so that the
information given in the decimal string is not lost. If later the
string representation of the BigNumber object is requested, the
produced string will match the string from which the BigNumber
object was created.

Internally, the BigNumber object knows how many precise bits
it has. The number of precise digits might be greater than
the currently requested precision. But a truncation of precision
will only occur when performing arithmetic operations. This
behavior is desired, for example:

In> Builtin’Precision’Set(6)

Out> True;

In> x:=1.23456789

Out> 1.23456789;

In> x+1.111

Out> 2.345567;

In> x

Out> 1.23456789;

In this example, we would like to keep all information we have
about x and not truncate it to 6 digits. But when we add a
number to x, the result is only precise to 6 digits.

This behavior is implemented by storing the string represen-
tation "1.23456789" in the LispNumber object x. When an
arithmetic calculation such as x+1.111 is requested, the Number

method is called on x. This method, when called for the first
time, converts the string representation into a BigNumber object.

45

That BigNumber object will have 28 bits to cover the 9 signifi-
cant digits of the number, not the 19 bits normally required for
6 decimal digits of precision. But the result of an arithmetic
calculation is not computed with more than 6 decimal digits.
Later when x needs to be printed, the full string representation
is available so it is printed.

If now we increase precision to 20 digits, the object x will be
interpreted as 1.23456789 with 12 zeros at the end.

In> Builtin’Precision’Set(20)

Out> True;

In> x+0.000000000001

Out> 1.234567890001;

This behavior is more intuitive to people who are used to deci-
mal fractions.

46

Chapter 8

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA, 02111-1307

USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook,
or other written document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that deriva-
tive works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for man-
uals for free software, because free software needs free docu-
mentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work con-
taining the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter
section of the Document that deals exclusively with the rela-
tionship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text ed-
itors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX in-
put format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modi-
fication. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or process-
ing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this Li-
cense, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.

47

Copying in Quantity

If you publish printed copies of the Document numbering more
than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both cov-
ers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto ad-
jacent pages.

If you publish or distribute Opaque copies of the Docu-
ment numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent
copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously
at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors
of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Docu-
ment under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of pre-
vious versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of
that version gives permission.

2. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the prin-
cipal authors of the Document (all of its principal authors,
if it has less than five).

3. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified

Version under the terms of this License, in the form shown
in the Addendum below.

7. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s
license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History”, and its title, and
add to it an item stating at least the title, year, new au-
thors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled “History” in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated
in the previous sentence.

10. Preserve the network location, if any, given in the Docu-
ment for public access to a Transparent copy of the Docu-
ment, and likewise the network locations given in the Doc-
ument for previous versions it was based on. These may be
placed in the “History” section. You may omit a network
location for a work that was published at least four years
before the Document itself, or if the original publisher of
the version it refers to gives permission.

11. In any section entitled “Acknowledgements” or “Dedica-
tions”, preserve the section’s title, and preserve in the sec-
tion all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unal-
tered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

13. Delete any section entitled “Endorsements”. Such a section
may not be included in the Modified Version.

14. Do not retitle any existing section as “Endorsements” or
to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it
contains nothing but endorsements of your Modified Version by
various parties – for example, statements of peer review or that
the text has been approved by an organization as the authori-
tative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released
under this License, under the terms defined in section 4 above

48

for modified versions, provided that you include in the combina-
tion all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice.

The combined work need only contain one copy of this Li-
cense, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled
“History” in the various original documents, forming one sec-
tion entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”.
You must delete all sections entitled “Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other
documents released under this License, and replace the individ-
ual copies of this License in the various documents with a single
copy that is included in the collection, provided that you fol-
low the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copy-
ing of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume
of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is
called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Doc-
ument within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of sec-
tion 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections. You
may include a translation of this License provided that you also
include the original English version of this License. In case of a
disagreement between the translation and the original English
version of this License, the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Docu-
ment except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Doc-
ument is void, and will automatically terminate your rights un-
der this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either
of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by
the Free Software Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include
a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is

granted to copy, distribute and/or modify this

document under the terms of the GNU Free

Documentation License, Version 1.1 or any later

version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR

TITLES, with the Front-Cover Texts being LIST, and

with the Back-Cover Texts being LIST. A copy of

the license is included in the section entitled

‘‘GNU Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant
Sections” instead of saying which ones are invariant. If you have
no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

49

Index

autoconf, 29
automake, 28
autotools, 28

build system, 18, 28
autoconf, 29
automake, 28
autotools, 28
configure, 29
documentation, 30
executable, 30
makemake, 28
targets for make, 30
test suite, 31
Yacas scripts, 30

configuration, 29
CVS, 18

check out, 18
commit, 19
update, 19

documentation, 19
TEX problems, 25
building, 30
comments, 22
embedded code, 25
embedded in code, 26
environments, 21
equations, 21
fonts, 21
footnotes, 22
indexing, 23
insert another file, 22
internal hyperlinks, 21
lines too wide, 25
literate programming, 25, 26
markup debugging, 24
markup overview, 20
organization, 20
outside of Yacas source tree, 27
reference manual markup, 22
summary of labels, 23
summary of syntax, 24
Web hyperlinks, 21

make
targets, 30

makemake, 28
multiple-precision facility

requirements, 35

scripts
installation, 30

testing Yacas, 31

Wester’s benchmark, 31

50

