
Using Yacas, function reference

by the Yacas team 1

Yacas version: 1.3.6
generated on November 25, 2014

This document describes the functions that are useful in the context of using Yacas as an end user.

1This text is part of the Yacas software package. Copyright 2000–2002. Principal documentation authors: Ayal Zwi Pinkus,
Serge Winitzki, Jitse Niesen. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Contents

1 Introduction 10

2 Arithmetic and other operations on numbers 11
+ — arithmetic addition . 11
- — arithmetic subtraction or negation . 11
* — arithmetic multiplication . 11
/ — arithmetic division . 11
^ — arithmetic power . 12
Div — Determine divisor of two mathematical objects . 12
Mod — Determine remainder of two mathematical objects after dividing one by the other 12
Gcd — greatest common divisor . 12
Lcm — least common multiple . 13
<< — binary shift left operator . 13
>> — binary shift right operator . 13
FromBase — conversion of a number from non-decimal base to decimal base 13
ToBase — conversion of a number in decimal base to non-decimal base . 13
N — try determine numerical approximation of expression . 13
Rationalize — convert floating point numbers to fractions . 14
ContFrac — continued fraction expansion . 14
Decimal — decimal representation of a rational . 14
Floor — round a number downwards . 15
Ceil — round a number upwards . 15
Round — round a number to the nearest integer . 15
Min — minimum of a number of values . 15
Max — maximum of a number of values . 16
Numer — numerator of an expression . 16
Denom — denominator of an expression . 16
Pslq — search for integer relations between reals . 16

3 Predicates relating to numbers 17
< — test for “less than” . 17
> — test for “greater than” . 17
<= — test for “less or equal” . 17
>= — test for “greater or equal” . 18
IsZero — test whether argument is zero . 18
IsRational — test whether argument is a rational . 18

4 Calculus and elementary functions 19
Sin — trigonometric sine function . 19
Cos — trigonometric cosine function . 19
Tan — trigonometric tangent function . 19
ArcSin — inverse trigonometric function arc-sine . 20
ArcCos — inverse trigonometric function arc-cosine . 20
ArcTan — inverse trigonometric function arc-tangent . 20
Exp — exponential function . 21
Ln — natural logarithm . 21
Sqrt — square root . 21
Abs — absolute value or modulus of complex number . 21
Sign — sign of a number . 22

1

D — take derivative of expression with respect to variable . 22
Curl — curl of a vector field . 22
Diverge — divergence of a vector field . 23
Integrate — integration . 23
Limit — limit of an expression . 23

5 Random numbers 24
Random, RandomSeed — (pseudo-) random number generator . 24
RngCreate — manipulate random number generators as objects . 24
RngSeed — manipulate random number generators as objects . 24
Rng — manipulate random number generators as objects . 24
RandomIntegerMatrix — generate a matrix of random integers . 25
RandomIntegerVector — generate a vector of random integers . 25
RandomPoly — construct a random polynomial . 25

6 Series 26
Add — find sum of a list of values . 26
Sum — find sum of a sequence . 26
Factorize — product of a list of values . 26
Taylor — univariate Taylor series expansion . 26
InverseTaylor — Taylor expansion of inverse . 27
ReversePoly — solve h (f (x)) = g (x) +O (xn) for h . 27
BigOh — drop all terms of a certain order in a polynomial . 27
LagrangeInterpolant — polynomial interpolation . 28

7 Combinatorics 29
! — factorial . 29
!! — factorial and related functions . 29
*** — factorial and related functions . 29
Subfactorial — factorial and related functions . 29
Bin — binomial coefficients . 29
Eulerian — Eulerian numbers . 30
LeviCivita — totally anti-symmetric Levi-Civita symbol . 30
Permutations — get all permutations of a list . 30

8 Special functions 31
Gamma — Euler’s Gamma function . 31
Zeta — Riemann’s Zeta function . 31
Bernoulli — Bernoulli numbers and polynomials . 31
Euler — Euler numbers and polynomials . 32
LambertW — Lambert’s W function . 32

9 Complex numbers 33
Complex — construct a complex number . 33
Re — real part of a complex number . 33
Im — imaginary part of a complex number . 33
I — imaginary unit . 33
Conjugate — complex conjugate . 34
Arg — argument of a complex number . 34

10 Transforms 35
LaplaceTransform — Laplace Transform . 35

11 Simplification of expressions 36
Simplify — try to simplify an expression . 36
RadSimp — simplify expression with nested radicals . 36
FactorialSimplify — Simplify hypergeometric expressions containing factorials 36
LnExpand — expand a logarithmic expression using standard logarithm rules 37
LnCombine — combine logarithmic expressions using standard logarithm rules 37
TrigSimpCombine — combine products of trigonometric functions . 37

2

12 Symbolic solvers 39
Solve — solve an equation . 39
OldSolve — old version of Solve . 40
SuchThat — special purpose solver . 40
Eliminate — substitute and simplify . 40
PSolve — solve a polynomial equation . 41
MatrixSolve — solve a system of equations . 41

13 Numeric solvers 42
Newton — solve an equation numerically with Newton’s method . 42
FindRealRoots — find the real roots of a polynomial . 42
NumRealRoots — return the number of real roots of a polynomial . 42
MinimumBound — return lower bounds on the absolute values of real roots of a polynomial 43
MaximumBound — return upper bounds on the absolute values of real roots of a polynomial 43

14 Propositional logic theorem prover 44
CanProve — try to prove statement . 44

15 Differential Equations 45
OdeSolve — general ODE solver . 45
OdeTest — test the solution of an ODE . 45
OdeOrder — return order of an ODE . 45

16 Linear Algebra 46
Dot, . — get dot product of tensors . 46
InProduct — inner product of vectors (deprecated) . 46
CrossProduct — outer product of vectors . 46
Outer, o — get outer tensor product . 47
ZeroVector — create a vector with all zeroes . 47
BaseVector — base vector . 47
Identity — make identity matrix . 47
ZeroMatrix — make a zero matrix . 47
Diagonal — extract the diagonal from a matrix . 48
DiagonalMatrix — construct a diagonal matrix . 48
OrthogonalBasis — create an orthogonal basis . 48
OrthonormalBasis — create an orthonormal basis . 48
Normalize — normalize a vector . 48
Transpose — get transpose of a matrix . 49
Determinant — determinant of a matrix . 49
Trace — trace of a matrix . 49
Inverse — get inverse of a matrix . 49
Minor — get principal minor of a matrix . 49
CoFactor — cofactor of a matrix . 50
MatrixPower — get nth power of a square matrix . 50
SolveMatrix — solve a linear system . 50
CharacteristicEquation — get characteristic polynomial of a matrix . 50
EigenValues — get eigenvalues of a matrix . 51
EigenVectors — get eigenvectors of a matrix . 51
Sparsity — get the sparsity of a matrix . 51
Cholesky — find the Cholesky Decomposition . 51

17 Predicates related to matrices 53
IsScalar — test for a scalar . 53
IsVector — test for a vector . 53
IsMatrix — test for a matrix . 53
IsSquareMatrix — test for a square matrix . 54
IsHermitian — test for a Hermitian matrix . 54
IsOrthogonal — test for an orthogonal matrix . 54
IsDiagonal — test for a diagonal matrix . 54
IsLowerTriangular — test for a lower triangular matrix . 55
IsUpperTriangular — test for an upper triangular matrix . 55

3

IsSymmetric — test for a symmetric matrix . 55
IsSkewSymmetric — test for a skew-symmetric matrix . 55
IsUnitary — test for a unitary matrix . 55
IsIdempotent — test for an idempotent matrix . 56

18 Special matrices 57
JacobianMatrix — calculate the Jacobian matrix of n functions in n variables 57
VandermondeMatrix — create the Vandermonde matrix . 57
HessianMatrix — create the Hessian matrix . 57
HilbertMatrix — create a Hilbert matrix . 58
HilbertInverseMatrix — create a Hilbert inverse matrix . 58
ToeplitzMatrix — create a Toeplitz matrix . 58
WronskianMatrix — create the Wronskian matrix . 58
SylvesterMatrix — calculate the Sylvester matrix of two polynomials . 59

19 Operations on polynomials 60
Expand — transform a polynomial to an expanded form . 60
Degree — degree of a polynomial . 60
Coef — coefficient of a polynomial . 60
Content — content of a univariate polynomial . 61
PrimitivePart — primitive part of a univariate polynomial . 61
LeadingCoef — leading coefficient of a polynomial . 61
Monic — monic part of a polynomial . 62
SquareFree — return the square-free part of polynomial . 62
SquareFreeFactorize — return square-free decomposition of polynomial . 62
Horner — convert a polynomial into the Horner form . 62
ExpandBrackets — expand all brackets . 63
EvaluateHornerScheme — fast evaluation of polynomials . 63

20 Special polynomials 64
OrthoP — Legendre and Jacobi orthogonal polynomials . 64
OrthoH — Hermite orthogonal polynomials . 64
OrthoG — Gegenbauer orthogonal polynomials . 65
OrthoL — Laguerre orthogonal polynomials . 65
OrthoT — Chebyshev polynomials . 65
OrthoU — Chebyshev polynomials . 65
OrthoPSum — sums of series of orthogonal polynomials . 66
OrthoHSum — sums of series of orthogonal polynomials . 66
OrthoLSum — sums of series of orthogonal polynomials . 66
OrthoGSum — sums of series of orthogonal polynomials . 66
OrthoTSum — sums of series of orthogonal polynomials . 66
OrthoUSum — sums of series of orthogonal polynomials . 66
OrthoPoly — internal function for constructing orthogonal polynomials . 66
OrthoPolySum — internal function for computing series of orthogonal polynomials 67

21 List operations 68
Head — the first element of a list . 68
Tail — returns a list without its first element . 68
Length — the length of a list or string . 68
Map — apply an n-ary function to all entries in a list . 68
MapSingle — apply a unary function to all entries in a list . 69
MakeVector — vector of uniquely numbered variable names . 69
Select — select entries satisfying some predicate . 69
Nth — return the n-th element of a list . 69
DestructiveReverse — reverse a list destructively . 70
Reverse — return the reversed list (without touching the original) . 70
List — construct a list . 70
UnList — convert a list to a function application . 70
Listify — convert a function application to a list . 71
Concat — concatenate lists . 71
Delete — delete an element from a list . 71

4

Insert — insert an element into a list . 71
DestructiveDelete — delete an element destructively from a list . 71
DestructiveInsert — insert an element destructively into a list . 72
Replace — replace an entry in a list . 72
DestructiveReplace — replace an entry destructively in a list . 72
FlatCopy — copy the top level of a list . 73
Contains — test whether a list contains a certain element . 73
Find — get the index at which a certain element occurs . 73
Append — append an entry at the end of a list . 73
DestructiveAppend — destructively append an entry to a list . 74
RemoveDuplicates — remove any duplicates from a list . 74
Push — add an element on top of a stack . 74
Pop — remove an element from a stack . 74
PopFront — remove an element from the top of a stack . 75
PopBack — remove an element from the bottom of a stack . 75
Swap — swap two elements in a list . 75
Count — count the number of occurrences of an expression . 75
Intersection — return the intersection of two lists . 76
Union — return the union of two lists . 76
Difference — return the difference of two lists . 76
FillList — fill a list with a certain expression . 76
Drop — drop a range of elements from a list . 77
Take — take a sublist from a list, dropping the rest . 77
Partition — partition a list in sublists of equal length . 77
Assoc — return element stored in association list . 77
AssocIndices — return the keys in an association list . 78
AssocDelete — delete an entry in an association list . 78
Flatten — flatten expression w.r.t. some operator . 78
UnFlatten — inverse operation of Flatten . 78
Type — return the type of an expression . 79
NrArgs — return number of top-level arguments . 79
VarList — list of variables appearing in an expression . 79
VarListArith — list of variables appearing in an expression . 79
VarListSome — list of variables appearing in an expression . 79
FuncList — list of functions used in an expression . 80
FuncListArith — list of functions used in an expression . 80
FuncListSome — list of functions used in an expression . 80
BubbleSort — sort a list . 80
HeapSort — sort a list . 80
PrintList — print list with padding . 80
Table — evaluate while some variable ranges over interval . 81
TableForm — print each entry in a list on a line . 81
GlobalPop — restore variables using a global stack . 81
GlobalPush — save variables using a global stack . 81

22 Functional operators 82
: — prepend item to list, or concatenate strings . 82
@ — apply a function . 82
/@ — apply a function to all entries in a list . 82
.. — construct a list of consecutive integers . 83
NFunction — make wrapper for numeric functions . 83
Where — substitute result into expression . 83
AddTo — add an equation to a set of equations or set of set of equations . 84

23 Control flow functions 85
MaxEvalDepth — set the maximum evaluation depth . 85
Hold — keep expression unevaluated . 85
Eval — force evaluation of expression . 85
While — loop while a condition is met . 86
Until — loop until a condition is met . 86

5

If — branch point . 86

SystemCall — pass a command to the shell . 87

Function — declare or define a function . 87

Macro — declare or define a macro . 88

Use — load a file, but not twice . 88

For — C-style for loop . 88

ForEach — loop over all entries in list . 89

Apply — apply a function to arguments . 89

MapArgs — apply a function to all top-level arguments . 89

Subst — perform a substitution . 90

WithValue — temporary assignment during an evaluation . 90

/: — local simplification rules . 90

/:: — local simplification rules . 90

TraceStack — show calling stack after an error occurs . 91

TraceExp — evaluate with tracing enabled . 91

TraceRule — turn on tracing for a particular function . 91

Time — measure the time taken by a function . 92

24 Predicates 93

!= — test for “not equal” . 93

= — test for equality of expressions . 93

Not — logical negation . 93

And — logical conjunction . 94

Or — logical disjunction . 94

IsFreeOf — test whether expression depends on variable . 94

IsZeroVector — test whether list contains only zeroes . 94

IsNonObject — test whether argument is not an Object() . 95

IsEven — test for an even integer . 95

IsOdd — test for an odd integer . 95

IsEvenFunction — Return true if function is an even function, False otherwise 95

IsOddFunction — Return true if function is an odd function, False otherwise 95

IsFunction — test for a composite object . 96

IsAtom — test for an atom . 96

IsString — test for an string . 96

IsNumber — test for a number . 96

IsList — test for a list . 96

IsNumericList — test for a list of numbers . 97

IsBound — test for a bound variable . 97

IsBoolean — test for a Boolean value . 97

IsNegativeNumber — test for a negative number . 97

IsNegativeInteger — test for a negative integer . 97

IsPositiveNumber — test for a positive number . 98

IsPositiveInteger — test for a positive integer . 98

IsNotZero — test for a nonzero number . 98

IsNonZeroInteger — test for a nonzero integer . 98

IsInfinity — test for an infinity . 98

IsPositiveReal — test for a numerically positive value . 99

IsNegativeReal — test for a numerically negative value . 99

IsConstant — test for a constant . 99

IsGaussianInteger — test for a Gaussian integer . 99

MatchLinear — match an expression to a polynomial of degree one in a variable 100

HasExpr — check for expression containing a subexpression . 100

HasExprArith — check for expression containing a subexpression . 100

HasExprSome — check for expression containing a subexpression . 100

HasFunc — check for expression containing a function . 100

HasFuncArith — check for expression containing a function . 100

HasFuncSome — check for expression containing a function . 100

6

25 Yacas-specific constants 102
% — previous result . 102
True — boolean constant representing true . 102
False — boolean constant representing false . 102
EndOfFile — end-of-file marker . 102

26 Mathematical constants 103
Infinity — constant representing mathematical infinity . 103
Pi — mathematical constant, π . 103
Undefined — constant signifying an undefined result . 103
GoldenRatio — the Golden Ratio . 103
Catalan — Catalan’s Constant . 104
gamma — Euler’s constant γ . 104

27 Variables 105
:= — assign a variable or a list; define a function . 105
Set — assignment . 106
Clear — undo an assignment . 106
Local — declare new local variables . 107
++ — increment variable . 107
-- — decrement variable . 107
Object — create an incomplete type . 107
SetGlobalLazyVariable — global variable is to be evaluated lazily . 108
UniqueConstant — create a unique identifier . 108
LocalSymbols — create unique local symbols with given prefix . 108

28 Input/output and plotting 109
FullForm — print an expression in LISP-format . 109
Echo — high-level printing routine . 109
PrettyForm — print an expression nicely with ASCII art . 109
EvalFormula — print an evaluation nicely with ASCII art . 110
TeXForm — export expressions to LATEX . 110
CForm — export expression to C++ code . 110
IsCFormable — check possibility to export expression to C++ code . 110
Write — low-level printing routine . 111
WriteString — low-level printing routine for strings . 111
Space — print one or more spaces . 111
NewLine — print one or more newline characters . 112
FromFile — connect current input to a file . 112
FromString — connect current input to a string . 112
ToFile — connect current output to a file . 112
ToString — connect current output to a string . 113
Read — read an expression from current input . 113
ToStdout — select initial output stream for output . 113
ReadCmdLineString — read an expression from command line and return in string 113
LispRead — read expressions in LISP syntax . 114
LispReadListed — read expressions in LISP syntax . 114
ReadToken — read a token from current input . 114
Load — evaluate all expressions in a file . 115
Use — load a file, but not twice . 115
DefLoad — load a .def file . 115
FindFile — find a file in the current path . 115
PatchLoad — execute commands between <? and ?> in file . 115
Nl — the newline character . 116
V, InVerboseMode — set verbose output mode . 116
Plot2D — adaptive two-dimensional plotting . 116
Plot3DS — three-dimensional (surface) plotting . 117
XmlExplodeTag — convert XML strings to tag objects . 118
DefaultTokenizer — select the default syntax tokenizer for parsing the input 118
XmlTokenizer — select an XML syntax tokenizer for parsing the input . 118

7

OMForm — convert Yacas expression to OpenMath . 119
OMRead — convert expression from OpenMath to Yacas expression . 119
OMDef — define translations from Yacas to OpenMath and vice-versa. 119

29 String manipulation 121
StringMid’Set — change a substring . 121
StringMid’Get — retrieve a substring . 121
String — convert atom to string . 121
Atom — convert string to atom . 121
ConcatStrings — concatenate strings . 121
PatchString — execute commands between <? and ?> in strings . 122

30 Probability and Statistics 123
30.1 Probability . 123
BernoulliDistribution — Bernoulli distribution . 123
BinomialDistribution — binomial distribution . 123
tDistribution — Student’s t distribution . 123
PDF — probability density function . 123
30.2 Statistics . 123
ChiSquareTest — Pearson’s ChiSquare test . 123

31 Number theory 125
IsPrime — test for a prime number . 125
IsSmallPrime — test for a (small) prime number . 125
IsComposite — test for a composite number . 125
IsCoprime — test if integers are coprime . 125
IsSquareFree — test for a square-free number . 126
IsPrimePower — test for a power of a prime number . 126
NextPrime — generate a prime following a number . 126
IsTwinPrime — test for a twin prime . 126
IsIrregularPrime — test for an irregular prime . 127
IsCarmichaelNumber — test for a Carmichael number . 127
Factors — factorization . 127
IsAmicablePair — test for a pair of amicable numbers . 127
Factor — factorization, in pretty form . 128
Divisors — number of divisors . 128
DivisorsSum — the sum of divisors . 128
ProperDivisors — the number of proper divisors . 128
ProperDivisorsSum — the sum of proper divisors . 129
Moebius — the Moebius function . 129
CatalanNumber — return the nth Catalan Number . 129
FermatNumber — return the nth Fermat Number . 129
HarmonicNumber — return the nth Harmonic Number . 129
StirlingNumber1 — return the n,mth Stirling Number of the first kind . 130
StirlingNumber2 — return the n,mth Stirling Number of the second kind . 130
DivisorsList — the list of divisors . 130
SquareFreeDivisorsList — the list of square-free divisors . 130
MoebiusDivisorsList — the list of divisors and Moebius values . 130
SumForDivisors — loop over divisors . 131
RamanujanSum — compute the “Ramanujan sum” . 131
Cyclotomic — construct the cyclotomic polynomial . 131
PAdicExpand — p-adic expansion . 131
IsQuadraticResidue — functions related to finite groups . 132
LegendreSymbol — functions related to finite groups . 132
JacobiSymbol — functions related to finite groups . 132
GaussianFactors — factorization in Gaussian integers . 132
GaussianNorm — norm of a Gaussian integer . 132
IsGaussianUnit — test for a Gaussian unit . 132
IsGaussianPrime — test for a Gaussian prime . 133
GaussianGcd — greatest common divisor in Gaussian integers . 133

8

32 GNU Free Documentation License 134

9

Chapter 1

Introduction

Yacas (Yet Another Computer Algebra System) is a
small and highly flexible general-purpose computer alge-
bra system and programming language. The language has
a familiar, C-like infix-operator syntax. The distribution
contains a small library of mathematical functions, but its
real strength is in the language in which you can easily write
your own symbolic manipulation algorithms. The core en-
gine supports arbitrary precision arithmetic, and is able to
execute symbolic manipulations on various mathematical
objects by following user-defined rules.

You can use Yacas directly from the web site as a Java
applet (it runs inside your browser without needing a con-
nection to a remote server). This means that no additional
software needs to be installed (other than a free Java envi-
ronment if this is not installed yet).

Yacas can also be downloaded. The download contains
everything needed to create this entire web site. It also con-
tains the files needed to build an off-line version of Yacas,
a native executable that can run on your computer. This
is discussed further in another part of the documentation.

This document describes the functions that are useful in
the context of using Yacas as an end user. It is recom-
mended to first read the online interactive tutorial to get
acquainted with the basic language constructs first. This
document expands on the tutorial by explaining the usage
of the functions that are useful when doing calculations.

10

Chapter 2

Arithmetic and other operations on
numbers

Besides the usual arithmetical operations, Yacas defines
some more advanced operations on numbers. Many of them
also work on polynomials.

+ — arithmetic addition

(standard library)

Calling format:

x+y

+x

Precedence: 70

Parameters:

x and y – objects for which arithmetic addition is defined

Description:

The addition operators can work on integers, rational numbers,
complex numbers, vectors, matrices and lists.

These operators are implemented in the standard math li-
brary (as opposed to being built-in). This means that they can
be extended by the user.

Examples:

In> 2+3

Out> 5;

- — arithmetic subtraction or nega-
tion

(standard library)

Calling format:

x-y

Precedence: left-side: 70 , right-side: 40

-x

Parameters:

x and y – objects for which subtraction is defined

Description:

The subtraction operators can work on integers, rational num-
bers, complex numbers, vectors, matrices and lists.

These operators are implemented in the standard math li-
brary (as opposed to being built-in). This means that they can
be extended by the user.

Examples:

In> 2-3

Out> -1;

In> - 3

Out> -3;

* — arithmetic multiplication

(standard library)

Calling format:

x*y

Precedence: 40

Parameters:

x and y – objects for which arithmetic multiplication is defined

Description:

The multiplication operator can work on integers, rational num-
bers, complex numbers, vectors, matrices and lists.

This operator is implemented in the standard math library
(as opposed to being built-in). This means that they can be
extended by the user.

Examples:

In> 2*3

Out> 6;

/ — arithmetic division

(standard library)

Calling format:

x/y

11

Precedence: 30

Parameters:

x and y – objects for which arithmetic division is defined

Description:

The division operator can work on integers, rational numbers,
complex numbers, vectors, matrices and lists.

This operator is implemented in the standard math library
(as opposed to being built-in). This means that they can be
extended by the user.

Examples:

In> 6/2

Out> 3;

^ — arithmetic power

(standard library)

Calling format:

x^y

Precedence: 20

Parameters:

x and y – objects for which arithmetic operations are defined

Description:

These are the basic arithmetic operations. They can work on
integers, rational numbers, complex numbers, vectors, matrices
and lists.

These operators are implemented in the standard math li-
brary (as opposed to being built-in). This means that they can
be extended by the user.

Examples:

In> 2^3

Out> 8;

Div — Determine divisor of two
mathematical objects

Mod — Determine remainder of two
mathematical objects after dividing
one by the other

(standard library)

Calling format:

Div(x,y)

Mod(x,y)

Parameters:

x, y – integers or univariate polynomials

Description:

Div performs integer division and Mod returns the remainder
after division. Div and Mod are also defined for polynomials.

If Div(x,y) returns ”a” and Mod(x,y) equals ”b”, then these
numbers satisfy x = ay + b and 0 ≤ b < y.

Examples:

In> Div(5,3)

Out> 1;

In> Mod(5,3)

Out> 2;

See also: Gcd, Lcm

Gcd — greatest common divisor

(standard library)

Calling format:

Gcd(n,m)

Gcd(list)

Parameters:

n, m – integers or Gaussian integers or univariate polynomials
list – a list of all integers or all univariate polynomials

Description:

This function returns the greatest common divisor of “n” and
“m”. The gcd is the largest number that divides “n” and “m”.
It is also known as the highest common factor (hcf). The library
code calls MathGcd, which is an internal function. This function
implements the “binary Euclidean algorithm” for determining
the greatest common divisor:

Routine for calculating Gcd(n,m)

1. if n = m then return n

2. if both n and m are even then return 2Gcd
(
n
2
, m

2

)
3. if exactly one of n or m (say n) is even then return

Gcd
(
n
2
,m
)

4. if both n and m are odd and, say, n > m then return
Gcd

(
n−m

2
,m
)

This is a rather fast algorithm on computers that can ef-
ficiently shift integers. When factoring Gaussian integers, a
slower recursive algorithm is used.

If the second calling form is used, Gcd will return the greatest
common divisor of all the integers or polynomials in “list”. It
uses the identity

Gcd (a, b, c) = Gcd (Gcd (a, b) , c) .

Examples:

In> Gcd(55,10)

Out> 5;

In> Gcd({60,24,120})

Out> 12;

In> Gcd(7300 + 12*I, 2700 + 100*I)

Out> Complex(-4,4);

See also: Lcm

12

Lcm — least common multiple

(standard library)

Calling format:

Lcm(n,m)

Lcm(list)

Parameters:

n, m – integers or univariate polynomials list – list of integers

Description:

This command returns the least common multiple of “n” and
“m” or all of the integers in the list list. The least common
multiple of two numbers “n” and “m” is the lowest number
which is an integer multiple of both “n” and “m”. It is calcu-
lated with the formula

Lcm (n,m) = Div (nm,Gcd (n,m)) .

This means it also works on polynomials, since Div, Gcd and
multiplication are also defined for them.

Examples:

In> Lcm(60,24)

Out> 120;

In> Lcm({3,5,7,9})

Out> 315;

See also: Gcd

<< — binary shift left operator

>> — binary shift right operator

(standard library)

Calling format:

n<<m

n>>m

Parameters:

n, m – integers

Description:

These operators shift integers to the left or to the right. They
are similar to the C shift operators. These are sign-extended
shifts, so they act as multiplication or division by powers of 2.

Examples:

In> 1 << 10

Out> 1024;

In> -1024 >> 10

Out> -1;

FromBase — conversion of a number
from non-decimal base to decimal
base

ToBase — conversion of a number in
decimal base to non-decimal base

(Yacas internal)

Calling format:

FromBase(base,"string")

ToBase(base, number)

Parameters:

base – integer, base to convert to/from

number – integer, number to write out in a different base

"string" – string representing a number in a different base

Description:

In Yacas, all numbers are written in decimal notation (base 10).
The two functions FromBase, ToBase convert numbers between
base 10 and a different base. Numbers in non-decimal notation
are represented by strings.

FromBase converts an integer, written as a string in base base,
to base 10. ToBase converts number, written in base 10, to base
base.

Non-integer arguments are not supported.

Examples:

Write the binary number 111111 as a decimal number:

In> FromBase(2,"111111")

Out> 63;

Write the (decimal) number 255 in hexadecimal notation:

In> ToBase(16,255)

Out> "ff";

See also: PAdicExpand

N — try determine numerical ap-
proximation of expression

(standard library)

Calling format:

N(expression)

N(expression, precision)

Parameters:

expression – expression to evaluate

precision – integer, precision to use

Description:

13

The function N instructs Yacas to try to coerce an expression
in to a numerical approximation to the expression expr, using
prec digits precision if the second calling sequence is used, and
the default precision otherwise. This overrides the normal be-
haviour, in which expressions are kept in symbolic form (eg.
Sqrt(2) instead of 1.41421).

Application of the N operator will make Yacas calculate float-
ing point representations of functions whenever possible. In
addition, the variable Pi is bound to the value of π calculated
at the current precision. (This value is a “cached constant”, so
it is not recalculated each time N is used, unless the precision is
increased.)

N is a macro. Its argument expr will only be evaluated after
switching to numeric mode.

Examples:

In> 1/2

Out> 1/2;

In> N(1/2)

Out> 0.5;

In> Sin(1)

Out> Sin(1);

In> N(Sin(1),10)

Out> 0.8414709848;

In> Pi

Out> Pi;

In> N(Pi,20)

Out> 3.14159265358979323846;

See also: Pi

Rationalize — convert floating point
numbers to fractions

(standard library)

Calling format:

Rationalize(expr)

Parameters:

expr – an expression containing real numbers

Description:

This command converts every real number in the expression
“expr” into a rational number. This is useful when a calculation
needs to be done on floating point numbers and the algorithm
is unstable. Converting the floating point numbers to rational
numbers will force calculations to be done with infinite precision
(by using rational numbers as representations).

It does this by finding the smallest integer n such that mul-
tiplying the number with 10n is an integer. Then it divides by
10n again, depending on the internal gcd calculation to reduce
the resulting division of integers.

Examples:

In> {1.2,3.123,4.5}

Out> {1.2,3.123,4.5};

In> Rationalize(%)

Out> {6/5,3123/1000,9/2};

See also: IsRational

ContFrac — continued fraction ex-
pansion

(standard library)

Calling format:

ContFrac(x)

ContFrac(x, depth)

Parameters:

x – number or polynomial to expand in continued fractions
depth – integer, maximum required depth of result

Description:

This command returns the continued fraction expansion of x,
which should be either a floating point number or a polynomial.
If depth is not specified, it defaults to 6. The remainder is
denoted by rest.

This is especially useful for polynomials, since series expan-
sions that converge slowly will typically converge a lot faster if
calculated using a continued fraction expansion.

Examples:

In> PrettyForm(ContFrac(N(Pi)))

1

--------------------------- + 3

1

----------------------- + 7

1

------------------ + 15

1

-------------- + 1

1

-------- + 292

rest + 1

Out> True;

In> PrettyForm(ContFrac(x^2+x+1, 3))

x

---------------- + 1

x

1 - ------------

x

-------- + 1

rest + 1

Out> True;

See also: PAdicExpand, N

Decimal — decimal representation of
a rational

(standard library)

Calling format:

Decimal(frac)

Parameters:

14

frac – a rational number

Description:

This function returns the infinite decimal representation of a
rational number frac. It returns a list, with the first element
being the number before the decimal point and the last element
the sequence of digits that will repeat forever. All the interme-
diate list elements are the initial digits before the period sets
in.

Examples:

In> Decimal(1/22)

Out> {0,0,{4,5}};

In> N(1/22,30)

Out> 0.045454545454545454545454545454;

See also: N

Floor — round a number downwards

(standard library)

Calling format:

Floor(x)

Parameters:

x – a number

Description:

This function returns bxc, the largest integer smaller than or
equal to x.

Examples:

In> Floor(1.1)

Out> 1;

In> Floor(-1.1)

Out> -2;

See also: Ceil, Round

Ceil — round a number upwards

(standard library)

Calling format:

Ceil(x)

Parameters:

x – a number

Description:

This function returns dxe, the smallest integer larger than or
equal to x.

Examples:

In> Ceil(1.1)

Out> 2;

In> Ceil(-1.1)

Out> -1;

See also: Floor, Round

Round — round a number to the
nearest integer

(standard library)

Calling format:

Round(x)

Parameters:

x – a number

Description:

This function returns the integer closest to x. Half-integers (i.e.
numbers of the form n + 0.5, with n an integer) are rounded
upwards.

Examples:

In> Round(1.49)

Out> 1;

In> Round(1.51)

Out> 2;

In> Round(-1.49)

Out> -1;

In> Round(-1.51)

Out> -2;

See also: Floor, Ceil

Min — minimum of a number of val-
ues

(standard library)

Calling format:

Min(x,y)

Min(list)

Parameters:

x, y – pair of values to determine the minimum of

list – list of values from which the minimum is sought

Description:

This function returns the minimum value of its argument(s). If
the first calling sequence is used, the smaller of “x” and “y” is
returned. If one uses the second form, the smallest of the entries
in “list” is returned. In both cases, this function can only be
used with numerical values and not with symbolic arguments.

Examples:

In> Min(2,3);

Out> 2;

In> Min({5,8,4});

Out> 4;

See also: Max, Sum

15

Max — maximum of a number of val-
ues

(standard library)

Calling format:

Max(x,y)

Max(list)

Parameters:

x, y – pair of values to determine the maximum of

list – list of values from which the maximum is sought

Description:

This function returns the maximum value of its argument(s). If
the first calling sequence is used, the larger of “x” and “y” is
returned. If one uses the second form, the largest of the entries
in “list” is returned. In both cases, this function can only be
used with numerical values and not with symbolic arguments.

Examples:

In> Max(2,3);

Out> 3;

In> Max({5,8,4});

Out> 8;

See also: Min, Sum

Numer — numerator of an expression

(standard library)

Calling format:

Numer(expr)

Parameters:

expr – expression to determine numerator of

Description:

This function determines the numerator of the rational expres-
sion “expr” and returns it. As a special case, if its argument is
numeric but not rational, it returns this number. If “expr” is
neither rational nor numeric, the function returns unevaluated.

Examples:

In> Numer(2/7)

Out> 2;

In> Numer(a / x^2)

Out> a;

In> Numer(5)

Out> 5;

See also: Denom, IsRational, IsNumber

Denom — denominator of an expres-
sion

(standard library)

Calling format:

Denom(expr)

Parameters:

expr – expression to determine denominator of

Description:

This function determines the denominator of the rational ex-
pression “expr” and returns it. As a special case, if its argument
is numeric but not rational, it returns 1. If ”expr” is neither ra-
tional nor numeric, the function returns unevaluated.

Examples:

In> Denom(2/7)

Out> 7;

In> Denom(a / x^2)

Out> x^2;

In> Denom(5)

Out> 1;

See also: Numer, IsRational, IsNumber

Pslq — search for integer relations
between reals

(standard library)

Calling format:

Pslq(xlist,precision)

Parameters:

xlist – list of numbers
precision – required number of digits precision of calculation

Description:

This function is an integer relation detection algorithm. This
means that, given the numbers xi in the list “xlist”, it tries to
find integer coefficients ai such that a1x1 + ... + anxn = 0.
The list of integer coefficients is returned.

The numbers in “xlist” must evaluate to floating point num-
bers if the N operator is applied on them.

Example:

In> Pslq({ 2*Pi+3*Exp(1), Pi, Exp(1) },20)

Out> {1,-2,-3};

Note: in this example the system detects correctly that
1 (2π + 3e) + (−2)π + (−3) e = 0.

See also: N

16

Chapter 3

Predicates relating to numbers

< — test for “less than”

(standard library)

Calling format:

e1 < e2

Precedence: 90

Parameters:

e1, e2 – expressions to be compared

Description:

The two expression are evaluated. If both results are numeric,
they are compared. If the first expression is smaller than the
second one, the result is True and it is False otherwise. If either
of the expression is not numeric, after evaluation, the expression
is returned with evaluated arguments.

The word “numeric” in the previous paragraph has the follow-
ing meaning. An expression is numeric if it is either a number
(i.e. IsNumber returns True), or the quotient of two numbers,
or an infinity (i.e. IsInfinity returns True). Yacas will try to
coerce the arguments passed to this comparison operator to a
real value before making the comparison.

Examples:

In> 2 < 5;

Out> True;

In> Cos(1) < 5;

Out> True;

See also: IsNumber, IsInfinity, N

> — test for “greater than”

(standard library)

Calling format:

e1 > e2

Precedence: 90

Parameters:

e1, e2 – expressions to be compared

Description:

The two expression are evaluated. If both results are numeric,
they are compared. If the first expression is larger than the
second one, the result is True and it is False otherwise. If
either of the expression is not numeric, after evaluation, the
expression is returned with evaluated arguments.

The word “numeric” in the previous paragraph has the follow-
ing meaning. An expression is numeric if it is either a number
(i.e. IsNumber returns True), or the quotient of two numbers,
or an infinity (i.e. IsInfinity returns True). Yacas will try to
coerce the arguments passed to this comparison operator to a
real value before making the comparison.

Examples:

In> 2 > 5;

Out> False;

In> Cos(1) > 5;

Out> False

See also: IsNumber, IsInfinity, N

<= — test for “less or equal”

(standard library)

Calling format:

e1 <= e2

Precedence: 90

Parameters:

e1, e2 – expressions to be compared

Description:

The two expression are evaluated. If both results are numeric,
they are compared. If the first expression is smaller than or
equals the second one, the result is True and it is False other-
wise. If either of the expression is not numeric, after evaluation,
the expression is returned with evaluated arguments.

The word “numeric” in the previous paragraph has the follow-
ing meaning. An expression is numeric if it is either a number
(i.e. IsNumber returns True), or the quotient of two numbers,
or an infinity (i.e. IsInfinity returns True). Yacas will try to
coerce the arguments passed to this comparison operator to a
real value before making the comparison.

Examples:

In> 2 <= 5;

Out> True;

In> Cos(1) <= 5;

Out> True

See also: IsNumber, IsInfinity, N

17

>= — test for “greater or equal”

(standard library)

Calling format:

e1 >= e2

Precedence: 90

Parameters:

e1, e2 – expressions to be compared

Description:

The two expression are evaluated. If both results are numeric,
they are compared. If the first expression is larger than or equals
the second one, the result is True and it is False otherwise. If
either of the expression is not numeric, after evaluation, the
expression is returned with evaluated arguments.

The word “numeric” in the previous paragraph has the follow-
ing meaning. An expression is numeric if it is either a number
(i.e. IsNumber returns True), or the quotient of two numbers,
or an infinity (i.e. IsInfinity returns True). Yacas will try to
coerce the arguments passed to this comparison operator to a
real value before making the comparison.

Examples:

In> 2 >= 5;

Out> False;

In> Cos(1) >= 5;

Out> False

See also: IsNumber, IsInfinity, N

IsZero — test whether argument is
zero

(standard library)

Calling format:

IsZero(n)

Parameters:

n – number to test

Description:

IsZero(n) evaluates to True if “n” is zero. In case “n” is not a
number, the function returns False.

Examples:

In> IsZero(3.25)

Out> False;

In> IsZero(0)

Out> True;

In> IsZero(x)

Out> False;

See also: IsNumber, IsNotZero

IsRational — test whether argu-
ment is a rational

(standard library)

Calling format:

IsRational(expr)

Parameters:

expr – expression to test

Description:

This commands tests whether the expression “expr” is a rational
number, i.e. an integer or a fraction of integers.

Examples:

In> IsRational(5)

Out> False;

In> IsRational(2/7)

Out> True;

In> IsRational(0.5)

Out> False;

In> IsRational(a/b)

Out> False;

In> IsRational(x + 1/x)

Out> False;

See also: Numer, Denom

18

Chapter 4

Calculus and elementary functions

In this chapter, some facilities for doing calculus are de-
scribed. These include functions implementing differentiation,
integration, standard mathematical functions, and solving of
equations.

Sin — trigonometric sine function

(standard library)

Calling format:

Sin(x)

Parameters:

x – argument to the function, in radians

Description:

This function represents the trigonometric function sine. Yacas
leaves expressions alone even if x is a number, trying to keep the
result as exact as possible. The floating point approximations
of these functions can be forced by using the N function.

Yacas knows some trigonometric identities, so it can simplify
to exact results even if N is not used. This is the case, for
instance, when the argument is a multiple of π/6 or π/4.

These functions are threaded, meaning that if the argument
x is a list, the function is applied to all entries in the list.

Examples:

In> Sin(1)

Out> Sin(1);

In> N(Sin(1),20)

Out> 0.84147098480789650665;

In> Sin(Pi/4)

Out> Sqrt(2)/2;

See also: Cos, Tan, ArcSin, ArcCos, ArcTan, N, Pi

Cos — trigonometric cosine function

(standard library)

Calling format:

Cos(x)

Parameters:

x – argument to the function, in radians

Description:

This function represents the trigonometric function cosine. Ya-
cas leaves expressions alone even if x is a number, trying to keep
the result as exact as possible. The floating point approxima-
tions of these functions can be forced by using the N function.

Yacas knows some trigonometric identities, so it can simplify
to exact results even if N is not used. This is the case, for
instance, when the argument is a multiple of π/6 or π/4.

These functions are threaded, meaning that if the argument
x is a list, the function is applied to all entries in the list.

Examples:

In> Cos(1)

Out> Cos(1);

In> N(Cos(1),20)

Out> 0.5403023058681397174;

In> Cos(Pi/4)

Out> Sqrt(1/2);

See also: Sin, Tan, ArcSin, ArcCos, ArcTan, N, Pi

Tan — trigonometric tangent func-
tion

(standard library)

Calling format:

Tan(x)

Parameters:

x – argument to the function, in radians

Description:

This function represents the trigonometric function tangent.
Yacas leaves expressions alone even if x is a number, trying
to keep the result as exact as possible. The floating point ap-
proximations of these functions can be forced by using the N

function.
Yacas knows some trigonometric identities, so it can simplify

to exact results even if N is not used. This is the case, for
instance, when the argument is a multiple of π/6 or π/4.

These functions are threaded, meaning that if the argument
x is a list, the function is applied to all entries in the list.

Examples:

19

In> Tan(1)

Out> Tan(1);

In> N(Tan(1),20)

Out> 1.5574077246549022305;

In> Tan(Pi/4)

Out> 1;

See also: Sin, Cos, ArcSin, ArcCos, ArcTan, N, Pi

ArcSin — inverse trigonometric
function arc-sine

(standard library)

Calling format:

ArcSin(x)

Parameters:

x – argument to the function

Description:

This function represents the inverse trigonometric function arc-
sine. For instance, the value of arcsinx is a number y such that
sin y equals x.

Note that the number y is not unique. For instance, sin 0
and sinπ both equal 0, so what should arcsin 0 be? In Yacas,
it is agreed that the value of arcsinx should be in the interval
[-π/2,π/2].

Usually, Yacas leaves this function alone unless it is forced to
do a numerical evaluation by the N function. If the argument
is -1, 0, or 1 however, Yacas will simplify the expression. If the
argument is complex, the expression will be rewritten using the
Ln function.

This function is threaded, meaning that if the argument x is
a list, the function is applied to all entries in the list.

Examples:

In> ArcSin(1)

Out> Pi/2;

In> ArcSin(1/3)

Out> ArcSin(1/3);

In> Sin(ArcSin(1/3))

Out> 1/3;

In> x:=N(ArcSin(0.75))

Out> 0.848062;

In> N(Sin(x))

Out> 0.7499999477;

See also: Sin, Cos, Tan, N, Pi, Ln, ArcCos, ArcTan

ArcCos — inverse trigonometric
function arc-cosine

(standard library)

Calling format:

ArcCos(x)

Parameters:

x – argument to the function

Description:

This function represents the inverse trigonometric function arc-
cosine. For instance, the value of arccosx is a number y such
that cos y equals x.

Note that the number y is not unique. For instance, cos π
2

and cos 3π
2

both equal 0, so what should arccos 0 be? In Yacas,
it is agreed that the value of arccosx should be in the interval
[0,π] .

Usually, Yacas leaves this function alone unless it is forced to
do a numerical evaluation by the N function. If the argument
is -1, 0, or 1 however, Yacas will simplify the expression. If the
argument is complex, the expression will be rewritten using the
Ln function.

This function is threaded, meaning that if the argument x is
a list, the function is applied to all entries in the list.

Examples:

In> ArcCos(0)

Out> Pi/2

In> ArcCos(1/3)

Out> ArcCos(1/3)

In> Cos(ArcCos(1/3))

Out> 1/3

In> x:=N(ArcCos(0.75))

Out> 0.7227342478

In> N(Cos(x))

Out> 0.75

See also: Sin, Cos, Tan, N, Pi, Ln, ArcSin, ArcTan

ArcTan — inverse trigonometric
function arc-tangent

(standard library)

Calling format:

ArcTan(x)

Parameters:

x – argument to the function

Description:

This function represents the inverse trigonometric function arc-
tangent. For instance, the value of arctanx is a number y such
that tan y equals x.

Note that the number y is not unique. For instance, tan 0
and tan 2π both equal 0, so what should arctan 0 be? In Yacas,
it is agreed that the value of arctanx should be in the interval
[-π/2,π/2].

Usually, Yacas leaves this function alone unless it is forced to
do a numerical evaluation by the N function. Yacas will try to
simplify as much as possible while keeping the result exact. If
the argument is complex, the expression will be rewritten using
the Ln function.

This function is threaded, meaning that if the argument x is
a list, the function is applied to all entries in the list.

20

Examples:

In> ArcTan(1)

Out> Pi/4

In> ArcTan(1/3)

Out> ArcTan(1/3)

In> Tan(ArcTan(1/3))

Out> 1/3

In> x:=N(ArcTan(0.75))

Out> 0.643501108793285592213351264945231378078460693359375

In> N(Tan(x))

Out> 0.75

See also: Sin, Cos, Tan, N, Pi, Ln, ArcSin, ArcCos

Exp — exponential function

(standard library)

Calling format:

Exp(x)

Parameters:

x – argument to the function

Description:

This function calculates e raised to the power x, where e is the
mathematic constant 2.71828... One can use Exp(1) to represent
e.

This function is threaded, meaning that if the argument x is
a list, the function is applied to all entries in the list.

Examples:

In> Exp(0)

Out> 1;

In> Exp(I*Pi)

Out> -1;

In> N(Exp(1))

Out> 2.7182818284;

See also: Ln, Sin, Cos, Tan, N

Ln — natural logarithm

(standard library)

Calling format:

Ln(x)

Parameters:

x – argument to the function

Description:

This function calculates the natural logarithm of “x”. This is the
inverse function of the exponential function, Exp, i.e. lnx = y
implies that exp (y) = x. For complex arguments, the imaginary
part of the logarithm is in the interval (-π,π]. This is compatible
with the branch cut of Arg.

This function is threaded, meaning that if the argument x is
a list, the function is applied to all entries in the list.

Examples:

In> Ln(1)

Out> 0;

In> Ln(Exp(x))

Out> x;

In> D(x) Ln(x)

Out> 1/x;

See also: Exp, Arg

Sqrt — square root

(standard library)

Calling format:

Sqrt(x)

Parameters:

x – argument to the function

Description:

This function calculates the square root of “x”. If the result is
not rational, the call is returned unevaluated unless a numerical
approximation is forced with the N function. This function can
also handle negative and complex arguments.

This function is threaded, meaning that if the argument x is
a list, the function is applied to all entries in the list.

Examples:

In> Sqrt(16)

Out> 4;

In> Sqrt(15)

Out> Sqrt(15);

In> N(Sqrt(15))

Out> 3.8729833462;

In> Sqrt(4/9)

Out> 2/3;

In> Sqrt(-1)

Out> Complex(0,1);

See also: Exp, ^, N

Abs — absolute value or modulus of
complex number

(standard library)

Calling format:

Abs(x)

Parameters:

x – argument to the function

Description:

21

This function returns the absolute value (also called the modu-
lus) of “x”. If “x” is positive, the absolute value is “x” itself; if
“x” is negative, the absolute value is “-x”. For complex “x”, the
modulus is the “r” in the polar decomposition x = r exp (ıφ).

This function is connected to the Sign function by the identity
“Abs(x) * Sign(x) = x” for real “x”.

This function is threaded, meaning that if the argument x is
a list, the function is applied to all entries in the list.

Examples:

In> Abs(2);

Out> 2;

In> Abs(-1/2);

Out> 1/2;

In> Abs(3+4*I);

Out> 5;

See also: Sign, Arg

Sign — sign of a number

(standard library)

Calling format:

Sign(x)

Parameters:

x – argument to the function

Description:

This function returns the sign of the real number x. It is “1”
for positive numbers and “-1” for negative numbers. Somewhat
arbitrarily, Sign(0) is defined to be 1.

This function is connected to the Abs function by the identity
|x| Sign (x) = x for real x.

This function is threaded, meaning that if the argument x is
a list, the function is applied to all entries in the list.

Examples:

In> Sign(2)

Out> 1;

In> Sign(-3)

Out> -1;

In> Sign(0)

Out> 1;

In> Sign(-3) * Abs(-3)

Out> -3;

See also: Arg, Abs

D — take derivative of expression
with respect to variable

(standard library)

Calling format:

D(variable) expression

D(list) expression

D(variable,n) expression

Parameters:

variable – variable
list – a list of variables
expression – expression to take derivatives of
n – order of derivative

Description:

This function calculates the derivative of the expression expr

with respect to the variable var and returns it. If the third
calling format is used, the n-th derivative is determined. Yacas
knows how to differentiate standard functions such as Ln and
Sin.

The D operator is threaded in both var and expr. This means
that if either of them is a list, the function is applied to each
entry in the list. The results are collected in another list which is
returned. If both var and expr are a list, their lengths should be
equal. In this case, the first entry in the list expr is differentiated
with respect to the first entry in the list var, the second entry
in expr is differentiated with respect to the second entry in var,
and so on.

The D operator returns the original function if n = 0, a com-
mon mathematical idiom that simplifies many formulae.

Examples:

In> D(x)Sin(x*y)

Out> y*Cos(x*y);

In> D({x,y,z})Sin(x*y)

Out> {y*Cos(x*y),x*Cos(x*y),0};

In> D(x,2)Sin(x*y)

Out> -Sin(x*y)*y^2;

In> D(x){Sin(x),Cos(x)}

Out> {Cos(x),-Sin(x)};

See also: Integrate, Taylor, Diverge, Curl

Curl — curl of a vector field

(standard library)

Calling format:

Curl(vector, basis)

Parameters:

vector – vector field to take the curl of
basis – list of variables forming the basis

Description:

This function takes the curl of the vector field “vector” with
respect to the variables “basis”. The curl is defined in the usual
way,

Curl(f,x) = {

D(x[2]) f[3] - D(x[3]) f[2],

D(x[3]) f[1] - D(x[1]) f[3],

D(x[1]) f[2] - D(x[2]) f[1]

}

Both “vector” and “basis” should be lists of length 3.

Example:

In> Curl({x*y,x*y,x*y},{x,y,z})

Out> {x,-y,y-x};

See also: D, Diverge

22

Diverge — divergence of a vector
field

(standard library)

Calling format:

Diverge(vector, basis)

Parameters:

vector – vector field to calculate the divergence of
basis – list of variables forming the basis

Description:

This function calculates the divergence of the vector field “vec-
tor” with respect to the variables “basis”. The divergence is
defined as

Diverge(f,x) = D(x[1]) f[1] + ...

+ D(x[n]) f[n],

where n is the length of the lists ”vector” and “basis”. These
lists should have equal length.

Example:

In> Diverge({x*y,x*y,x*y},{x,y,z})

Out> y+x;

See also: D, Curl

Integrate — integration

(standard library)

Calling format:

Integrate(var, x1, x2) expr

Integrate(var) expr

Parameters:

var – atom, variable to integrate over
x1 – first point of definite integration
x2 – second point of definite integration
expr – expression to integrate

Description:

This function integrates the expression expr with respect to the
variable var. The first calling format is used to perform definite
integration: the integration is carried out from var = x1 to
var = x2”. The second form is for indefinite integration.

Some simple integration rules have currently been imple-
mented. Polynomials, some quotients of polynomials, trigono-
metric functions and their inverses, hyperbolic functions and
their inverses, Exp, and Ln, and products of these functions with
polynomials can be integrated.

Examples:

In> Integrate(x,a,b) Cos(x)

Out> Sin(b)-Sin(a);

In> Integrate(x) Cos(x)

Out> Sin(x);

See also: D, UniqueConstant

Limit — limit of an expression

(standard library)

Calling format:

Limit(var, val) expr

Limit(var, val, dir) expr

Parameters:

var – a variable
val – a number
dir – a direction (Left or Right)
expr – an expression

Description:

This command tries to determine the value that the expression
“expr” converges to when the variable “var” approaches “val”.
One may use Infinity or -Infinity for “val”. The result of
Limit may be one of the symbols Undefined (meaning that the
limit does not exist), Infinity, or -Infinity.

The second calling sequence is used for unidirectional limits.
If one gives “dir” the value Left, the limit is taken as “var”
approaches “val” from the positive infinity; and Right will take
the limit from the negative infinity.

Examples:

In> Limit(x,0) Sin(x)/x

Out> 1;

In> Limit(x,0) (Sin(x)-Tan(x))/(x^3)

Out> -1/2;

In> Limit(x,0) 1/x

Out> Undefined;

In> Limit(x,0,Left) 1/x

Out> -Infinity;

In> Limit(x,0,Right) 1/x

Out> Infinity;

23

Chapter 5

Random numbers

Random, RandomSeed — (pseudo-)
random number generator

(standard library)

Calling format:

Random()

RandomSeed(init)

*PARAMS init – positive integer, initial random seed

Description:

The function Random returns a random number, uniformly dis-
tributed in the interval between 0 and 1. The same sequence of
random numbers is generated in every Yacas session.

The random number generator can be initialized by calling
RandomSeed with an integer value. Each seed value will result
in the same sequence of pseudo-random numbers.

See also: RandomInteger, RandomPoly, Rng

RngCreate — manipulate random
number generators as objects

RngSeed — manipulate random num-
ber generators as objects

Rng — manipulate random number
generators as objects

(standard library)

Calling format:

RngCreate()

RngCreate(init)

RngCreate(option==value,...)

RngSeed(r, init)

Rng(r)

Parameters:

init – integer, initial seed value
option – atom, option name
value – atom, option value
r – a list, RNG object

Description:

These commands are an object-oriented interface to (pseudo-
)random number generators (RNGs).

RngCreate returns a list which is a well-formed RNG object.
Its value should be saved in a variable and used to call Rng and
RngSeed.

Rng(r) returns a floating-point random number between 0
and 1 and updates the RNG object r. (Currently, the Gaussian
option makes a RNG return a complex random number instead
of a real random number.)

RngSeed(r,init) re-initializes the RNG object r with the
seed value init. The seed value should be a positive integer.

The RngCreate function accepts several options as arguments.
Currently the following options are available:

• seed – specify initial seed value, must be a positive integer

• dist – specify the distribution of the random number; cur-
rently flat and gauss are implemented, and the default is
the flat (uniform) distribution

• engine – specify the RNG engine; currently default and
advanced are available (”advanced” is slower but has much
longer period)

If the initial seed is not specified, the value of 76544321 will
be used.

The gauss option will create a RNG object that generates
pairs of Gaussian distributed random numbers as a complex
random number. The real and the imaginary parts of this num-
ber are independent random numbers taken from a Gaussian
(i.e. “normal”) distribution with unit variance.

For the Gaussian distribution, the Box-Muller transform
method is used. A good description of this method, along with
the proof that the method generates normally distributed ran-
dom numbers, can be found in Knuth, “The Art of Computer
Programming”, Volume 2 (Seminumerical algorithms, third edi-
tion), section 3.4.1

Note that unlike the global Random function, the RNG objects
created with RngCreate are independent RNGs and do not af-
fect each other. They generate independent streams of pseudo-
random numbers. However, the Random function is slightly
faster.

Examples:

In> r1:=RngCreate(seed=1,dist=gauss)

Out> {"GaussianRNGDist","RNGEngine’LCG’2",{1}}

In> Rng(r1)

Out> Complex(-1.6668466417,0.228904004);

In> Rng(r1);

Out> Complex(0.0279296109,-0.5382405341);

24

The second RNG gives a uniform distribution (default option)
but uses a more complicated algorithm:

In> [r2:=RngCreate(engine=advanced);Rng(r2);]

Out> 0.3653615377;

The generator r1 can be re-initialized with seed 1 again to obtain
the same sequence:

In> RngSeed(r1, 1)

Out> True;

In> Rng(r1)

Out> Complex(-1.6668466417,0.228904004);

See also: Random

RandomIntegerMatrix — generate a
matrix of random integers

(standard library)

Calling format:

RandomIntegerMatrix(rows,cols,from,to)

Parameters:

rows – number of rows in matrix
cols – number of cols in matrix
from – lower bound
to – upper bound

Description:

This function generates a rows x cols matrix of random in-
tegers. All entries lie between “from” and “to”, including the
boundaries, and are uniformly distributed in this interval.

Examples:

In> PrettyForm(RandomIntegerMatrix(5,5,-2^10,2^10))

/ \

| (-506) (749) (-574) (-674) (-106) |

| |

| (301) (151) (-326) (-56) (-277) |

| |

| (777) (-761) (-161) (-918) (-417) |

| |

| (-518) (127) (136) (797) (-406) |

| |

| (679) (854) (-78) (503) (772) |

\ /

See also: RandomIntegerVector, RandomPoly

RandomIntegerVector — generate a
vector of random integers

(standard library)

Calling format:

RandomIntegerVector(nr, from, to)

Parameters:

nr – number of integers to generate
from – lower bound
to – upper bound

Description:

This function generates a list with “nr” random integers. All
entries lie between “from” and “to”, including the boundaries,
and are uniformly distributed in this interval.

Examples:

In> RandomIntegerVector(4,-3,3)

Out> {0,3,2,-2};

See also: Random, RandomPoly

RandomPoly — construct a random
polynomial

(standard library)

Calling format:

RandomPoly(var,deg,coefmin,coefmax)

Parameters:

var – free variable for resulting univariate polynomial
deg – degree of resulting univariate polynomial
coefmin – minimum value for coefficients
coefmax – maximum value for coefficients

Description:

RandomPoly generates a random polynomial in variable “var”,
of degree “deg”, with integer coefficients ranging from “coefmin”
to “coefmax” (inclusive). The coefficients are uniformly dis-
tributed in this interval, and are independent of each other.

Examples:

In> RandomPoly(x,3,-10,10)

Out> 3*x^3+10*x^2-4*x-6;

In> RandomPoly(x,3,-10,10)

Out> -2*x^3-8*x^2+8;

See also: Random, RandomIntegerVector

25

Chapter 6

Series

Add — find sum of a list of values

(standard library)

Calling format:

Add(val1, val2, ...)

Add({list})

Parameters:

val1, val2 – expressions
{list} – list of expressions to add

Description:

This function adds all its arguments and returns their sum. It
accepts any number of arguments. The arguments can be also
passed as a list.

Examples:

In> Add(1,4,9);

Out> 14;

In> Add(1 .. 10);

Out> 55;

Sum — find sum of a sequence

(standard library)

Calling format:

Sum(var, from, to, body)

Parameters:

var – variable to iterate over
from – integer value to iterate from
to – integer value to iterate up to
body – expression to evaluate for each iteration

Description:

The command finds the sum of the sequence generated by an
iterative formula. The expression “body” is evaluated while the
variable “var” ranges over all integers from “from” up to “to”,
and the sum of all the results is returned. Obviously, “to” should
be greater than or equal to “from”.

Warning: Sum does not evaluate its arguments var and body

until the actual loop is run.

Examples:

In> Sum(i, 1, 3, i^2);

Out> 14;

See also: Factorize

Factorize — product of a list of val-
ues

(standard library)

Calling format:

Factorize(list)

Factorize(var, from, to, body)

Parameters:

list – list of values to multiply
var – variable to iterate over
from – integer value to iterate from
to – integer value to iterate up to
body – expression to evaluate for each iteration

Description:

The first form of the Factorize command simply multiplies all
the entries in “list” and returns their product.

If the second calling sequence is used, the expression “body”
is evaluated while the variable “var” ranges over all integers
from “from” up to “to”, and the product of all the results is
returned. Obviously, “to” should be greater than or equal to
“from”.

Examples:

In> Factorize({1,2,3,4});

Out> 24;

In> Factorize(i, 1, 4, i);

Out> 24;

See also: Sum, Apply

Taylor — univariate Taylor series ex-
pansion

(standard library)

Calling format:

Taylor(var, at, order) expr

Parameters:

var – variable
at – point to get Taylor series around
order – order of approximation
expr – expression to get Taylor series for

26

Description:

This function returns the Taylor series expansion of the expres-
sion “expr” with respect to the variable “var” around “at” up to
order “order”. This is a polynomial which agrees with “expr” at
the point “var = at”, and furthermore the first “order” deriva-
tives of the polynomial at this point agree with “expr”. Taylor
expansions around removable singularities are correctly handled
by taking the limit as “var” approaches “at”.

Examples:

In> PrettyForm(Taylor(x,0,9) Sin(x))

3 5 7 9

x x x x

x - -- + --- - ---- + ------

6 120 5040 362880

Out> True;

See also: D, InverseTaylor, ReversePoly, BigOh

InverseTaylor — Taylor expansion of
inverse

(standard library)

Calling format:

InverseTaylor(var, at, order) expr

Parameters:

var – variable
at – point to get inverse Taylor series around
order – order of approximation
expr – expression to get inverse Taylor series for

Description:

This function builds the Taylor series expansion of the inverse of
the expression “expr” with respect to the variable “var” around
“at” up to order “order”. It uses the function ReversePoly to
perform the task.

Examples:

In> PrettyPrinter’Set("PrettyForm")

True

In> exp1 := Taylor(x,0,7) Sin(x)

3 5 7

x x x

x - -- + --- - ----

6 120 5040

In> exp2 := InverseTaylor(x,0,7) ArcSin(x)

5 7 3

x x x

--- - ---- - -- + x

120 5040 6

In> Simplify(exp1-exp2)

0

See also: ReversePoly, Taylor, BigOh

ReversePoly — solve h (f (x)) = g (x)+
O (xn) for h

(standard library)

Calling format:

ReversePoly(f, g, var, newvar, degree)

Parameters:

f, g – functions of ”var”
var – a variable
newvar – a new variable to express the result in
degree – the degree of the required solution

Description:

This function returns a polynomial in “newvar”, say
“h(newvar)“, with the property that “h(f(var))“ equals “g(var)“
up to order “degree”. The degree of the result will be at most
“degree-1”. The only requirement is that the first derivative of
“f” should not be zero.

This function is used to determine the Taylor series expan-
sion of the inverse of a function “f”: if we take “g(var)=var”,
then “h(f(var))=var” (up to order “degree”), so “h” will be the
inverse of “f”.

Examples:

In> f(x):=Eval(Expand((1+x)^4))

Out> True;

In> g(x) := x^2

Out> True;

In> h(y):=Eval(ReversePoly(f(x),g(x),x,y,8))

Out> True;

In> BigOh(h(f(x)),x,8)

Out> x^2;

In> h(x)

Out> (-2695*(x-1)^7)/131072+(791*(x-1)^6)

/32768 +(-119*(x-1)^5)/4096+(37*(x-1)^4)

/1024+(-3*(x-1)^3)/64+(x-1)^2/16;

See also: InverseTaylor, Taylor, BigOh

BigOh — drop all terms of a certain
order in a polynomial

(standard library)

Calling format:

BigOh(poly, var, degree)

Parameters:

poly – a univariate polynomial
var – a free variable
degree – positive integer

Description:

This function drops all terms of order “degree” or higher in
“poly”, which is a polynomial in the variable “var”.

Examples:

In> BigOh(1+x+x^2+x^3,x,2)

Out> x+1;

See also: Taylor, InverseTaylor

27

LagrangeInterpolant — polynomial
interpolation

(standard library)

Calling format:

LagrangeInterpolant(xlist, ylist, var)

Parameters:

xlist – list of argument values
ylist – list of function values
var – free variable for resulting polynomial

Description:

This function returns a polynomial in the variable “var” which
interpolates the points “(xlist, ylist)“. Specifically, the value of
the resulting polynomial at “xlist[1]“ is “ylist[1]“, the value at
“xlist[2]“ is “ylist[2]“, etc. The degree of the polynomial is not
greater than the length of “xlist”.

The lists “xlist” and “ylist” should be of equal length. Fur-
thermore, the entries of “xlist” should be all distinct to ensure
that there is one and only one solution.

This routine uses the Lagrange interpolant formula to build
up the polynomial.

Examples:

In> f := LagrangeInterpolant({0,1,2}, \

{0,1,1}, x);

Out> (x*(x-1))/2-x*(x-2);

In> Eval(Subst(x,0) f);

Out> 0;

In> Eval(Subst(x,1) f);

Out> 1;

In> Eval(Subst(x,2) f);

Out> 1;

In> PrettyPrinter’Set("PrettyForm");

True

In> LagrangeInterpolant({x1,x2,x3}, {y1,y2,y3}, x)

y1 * (x - x2) * (x - x3)

(x1 - x2) * (x1 - x3)

y2 * (x - x1) * (x - x3)

+ ----------------------------

(x2 - x1) * (x2 - x3)

y3 * (x - x1) * (x - x2)

+ ----------------------------

(x3 - x1) * (x3 - x2)

See also: Subst

28

Chapter 7

Combinatorics

! — factorial

!! — factorial and related functions

*** — factorial and related functions

Subfactorial — factorial and related
functions

(standard library)

Calling format:

n!

n!!

a *** b

Subfactorial(m)

Parameters:

m – integer n – integer, half-integer, or list a, b – numbers

Description:

The factorial function n! calculates the factorial of inte-
ger or half-integer numbers. For nonnegative integers, n! ≡
n (n− 1) (n− 2) ... · 1. The factorial of half-integers is defined
via Euler’s Gamma function, z! ≡ Γ (z + 1). If n = 0 the func-
tion returns 1.

The “double factorial” function n!! calculates
n (n− 2) (n− 4) This product terminates either with
1 or with 2 depending on whether n is odd or even. If n = 0
the function returns 1.

The “partial factorial” function a *** b calculates the prod-
uct a (a+ 1) ... which is terminated at the least integer not
greater than b. The arguments a and b do not have to be inte-
gers; for integer arguments, a *** b = b!

(a−1)!
. This function is

sometimes a lot faster than evaluating the two factorials, espe-
cially if a and b are close together. If a > b the function returns
1.

The Subfactorial function can be interpreted as the number
of permutations of m objects in which no object appears in its
natural place, also called “derangements.”

The factorial functions are threaded, meaning that if the ar-
gument n is a list, the function will be applied to each element
of the list.

Note: For reasons of Yacas syntax, the factorial sign ! cannot
precede other non-letter symbols such as + or *. Therefore, you
should enter a space after ! in expressions such as x! +1.

The factorial functions terminate and print an error message
if the arguments are too large (currently the limit is n < 65535)

because exact factorials of such large numbers are computa-
tionally expensive and most probably not useful. One can call
Internal’LnGammaNum() to evaluate logarithms of such factori-
als to desired precision.

Examples:

In> 5!

Out> 120;

In> 1 * 2 * 3 * 4 * 5

Out> 120;

In> (1/2)!

Out> Sqrt(Pi)/2;

In> 7!!;

Out> 105;

In> 1/3 *** 10;

Out> 17041024000/59049;

In> Subfactorial(10)

Out> 1334961;

See also: Bin, Factorize, Gamma, !!, ***, Subfactorial

Bin — binomial coefficients

(standard library)

Calling format:

Bin(n, m)

Parameters:

n, m – integers

Description:

This function calculates the binomial coefficient “n” above “m”,
which equals

n!

m! (n−m)!

This is equal to the number of ways to choose “m” objects
out of a total of “n” objects if order is not taken into account.
The binomial coefficient is defined to be zero if “m” is negative
or greater than “n”; Bin(0,0)=1.

Examples:

In> Bin(10, 4)

Out> 210;

In> 10! / (4! * 6!)

Out> 210;

See also: !, Eulerian

29

Eulerian — Eulerian numbers

(standard library)

Calling format:

Eulerian(n,m)

Parameters:

n, m — integers

Description:

The Eulerian numbers can be viewed as a generalization of the
binomial coefficients, and are given explicitly by

k+1∑
j=0

(−1)j
(
n+ 1

j

)
(k − j + 1)n

.

Examples:

In> Eulerian(6,2)

Out> 302;

In> Eulerian(10,9)

Out> 1;

See also: Bin

LeviCivita — totally anti-symmetric
Levi-Civita symbol

(standard library)

Calling format:

LeviCivita(list)

Parameters:

list – a list of integers 1 .. n in some order

Description:

LeviCivita implements the Levi-Civita symbol. This is gener-
ally useful for tensor calculus. list should be a list of integers,
and this function returns 1 if the integers are in successive order,
eg. LeviCivita({1,2,3,...}) would return 1. Swapping two
elements of this list would return -1. So, LeviCivita({2,1,3}
) would evaluate to -1.

Examples:

In> LeviCivita({1,2,3})

Out> 1;

In> LeviCivita({2,1,3})

Out> -1;

In> LeviCivita({2,2,3})

Out> 0;

See also: Permutations

Permutations — get all permutations
of a list

(standard library)

Calling format:

Permutations(list)

Parameters:

list – a list of elements

Description:

Permutations returns a list with all the permutations of the
original list.

Examples:

In> Permutations({a,b,c})

Out> {{a,b,c},{a,c,b},{c,a,b},{b,a,c},

{b,c,a},{c,b,a}};

See also: LeviCivita

30

Chapter 8

Special functions

In this chapter, special and transcendental mathematical
functions are described.

Gamma — Euler’s Gamma function

(standard library)

Calling format:

Gamma(x)

Parameters:

x – expression
number – expression that can be evaluated to a number

Description:

Gamma(x) is an interface to Euler’s Gamma function Γ (x).
It returns exact values on integer and half-integer arguments.
N(Gamma(x) takes a numeric parameter and always returns a
floating-point number in the current precision.

Note that Euler’s constant γ ≈ 0.57722 is the lowercase gamma
in Yacas.

Examples:

In> Gamma(1.3)

Out> Gamma(1.3);

In> N(Gamma(1.3),30)

Out> 0.897470696306277188493754954771;

In> Gamma(1.5)

Out> Sqrt(Pi)/2;

In> N(Gamma(1.5),30);

Out> 0.88622692545275801364908374167;

See also: !, N, gamma

Zeta — Riemann’s Zeta function

(standard library)

Calling format:

Zeta(x)

Parameters:

x – expression
number – expression that can be evaluated to a number

Description:

Zeta(x) is an interface to Riemann’s Zeta function ζ (s). It
returns exact values on integer and half-integer arguments.
N(Zeta(x) takes a numeric parameter and always returns a
floating-point number in the current precision.

Examples:

In> Precision(30)

Out> True;

In> Zeta(1)

Out> Infinity;

In> Zeta(1.3)

Out> Zeta(1.3);

In> N(Zeta(1.3))

Out> 3.93194921180954422697490751058798;

In> Zeta(2)

Out> Pi^2/6;

In> N(Zeta(2));

Out> 1.64493406684822643647241516664602;

See also: !, N

Bernoulli — Bernoulli numbers and
polynomials

(standard library)

Calling format:

Bernoulli(index)

Bernoulli(index, x)

Parameters:

x – expression that will be the variable in the polynomial
index – expression that can be evaluated to an integer

Description:

Bernoulli(n) evaluates the n-th Bernoulli number.
Bernoulli(n, x) returns the n-th Bernoulli polynomial
in the variable x. The polynomial is returned in the Horner
form.

Example:

In> Bernoulli(20);

Out> -174611/330;

In> Bernoulli(4, x);

Out> ((x-2)*x+1)*x^2-1/30;

See also: Gamma, Zeta

31

Euler — Euler numbers and polyno-
mials

(standard library)

Calling format:

Euler(index)

Euler(index,x)

Parameters:

x – expression that will be the variable in the polynomial
index – expression that can be evaluated to an integer

Description:

Euler(n) evaluates the n-th Euler number. Euler(n,x) returns
the n-th Euler polynomial in the variable x.

Examples:

In> Euler(6)

Out> -61;

In> A:=Euler(5,x)

Out> (x-1/2)^5+(-10*(x-1/2)^3)/4+(25*(x-1/2))/16;

In> Simplify(A)

Out> (2*x^5-5*x^4+5*x^2-1)/2;

See also: Bin

LambertW — Lambert’s W function

(standard library)

Calling format:

LambertW(x)

Parameters:

x – expression, argument of the function

Description:

Lambert’s W function is (a multiple-valued, complex function)
defined for any (complex) z by

W (z) exp (W (z)) = z.

This function is sometimes useful to represent solutions of tran-
scendental equations. For example, the equation lnx = 3x can
be “solved” by writing x = −3W

(
− 1

3

)
. It is also possible to

take a derivative or integrate this function “explicitly”.
For real arguments x, W (x) is real if x ≥ − exp (−1).
To compute the numeric value of the principal branch of Lam-

bert’s W function for real arguments x ≥ − exp (−1) to current
precision, one can call N(LambertW(x)) (where the function N

tries to approximate its argument with a real value).

Examples:

In> LambertW(0)

Out> 0;

In> N(LambertW(-0.24/Sqrt(3*Pi)))

Out> -0.0851224014;

See also: Exp

32

Chapter 9

Complex numbers

Yacas understands the concept of a complex number, and has
a few functions that allow manipulation of complex numbers.

Complex — construct a complex num-
ber

(standard library)

Calling format:

Complex(r, c)

Parameters:

r – real part
c – imaginary part

Description:

This function represents the complex number “r + I*c”, where
“I” is the imaginary unit. It is the standard representation used
in Yacas to represent complex numbers. Both “r” and “c” are
supposed to be real.

Note that, at the moment, many functions in Yacas assume
that all numbers are real unless it is obvious that it is a complex
number. Hence Im(Sqrt(x)) evaluates to 0 which is only true
for nonnegative ”x”.

Examples:

In> I

Out> Complex(0,1);

In> 3+4*I

Out> Complex(3,4);

In> Complex(-2,0)

Out> -2;

See also: Re, Im, I, Abs, Arg

Re — real part of a complex number

(standard library)

Calling format:

Re(x)

Parameters:

x – argument to the function

Description:

This function returns the real part of the complex number “x”.

Examples:

In> Re(5)

Out> 5;

In> Re(I)

Out> 0;

In> Re(Complex(3,4))

Out> 3;

See also: Complex, Im

Im — imaginary part of a complex
number

(standard library)

Calling format:

Im(x)

Parameters:

x – argument to the function

Description:

This function returns the imaginary part of the complex number
“x”.

Examples:

In> Im(5)

Out> 0;

In> Im(I)

Out> 1;

In> Im(Complex(3,4))

Out> 4;

See also: Complex, Re

I — imaginary unit

(standard library)

Calling format:

I

33

Description:

This symbol represents the imaginary unit, which equals the
square root of -1. It evaluates to Complex(0,1).

Examples:

In> I

Out> Complex(0,1);

In> I = Sqrt(-1)

Out> True;

See also: Complex

Conjugate — complex conjugate

(standard library)

Calling format:

Conjugate(x)

Parameters:

x – argument to the function

Description:

This function returns the complex conjugate of “x”. The com-
plex conjugate of a+ ıb is a− ıb. This function assumes that all
unbound variables are real.

Examples:

In> Conjugate(2)

Out> 2;

In> Conjugate(Complex(a,b))

Out> Complex(a,-b);

See also: Complex, Re, Im

Arg — argument of a complex num-
ber

(standard library)

Calling format:

Arg(x)

Parameters:

x – argument to the function

Description:

This function returns the argument of “x”. The argument is
the angle with the positive real axis in the Argand diagram,
or the angle “phi” in the polar representation r exp (ıφ) of “x”.
The result is in the range (−π, π], that is, excluding −π but
including π. The argument of 0 is Undefined.

Examples:

In> Arg(2)

Out> 0;

In> Arg(-1)

Out> Pi;

In> Arg(1+I)

Out> Pi/4;

See also: Abs, Sign

34

Chapter 10

Transforms

In this chapter, some facilities for various transforms are de-
scribed.

LaplaceTransform — Laplace Trans-
form

(standard library)

Calling format:

LaplaceTransform(t,s,f)

Parameters:

t – independent variable that is being transformed
s – independent variable that is being transformed into
f – function

Description:

This function attempts to take the function f (t) and
find the Laplace transform of it,F (s), which is defined as∫∞
0

exp (−st) f (t) dt. This is also sometimes referred to the
“unilateral” Laplace tranform. LaplaceTransform can trans-
form most elementary functions that do not require a con-
volution integral, as well as any polynomial times an el-
ementary function. If a transform cannot be found then
LaplaceTransform will return unevaluated. This can happen
for function which are not of “exponential order”, which means
that they grow faster than exponential functions.

Examples:

In> LaplaceTransform(t,s,2*t^5+ t^2/2)

Out> 240/s^6+2/(2*s^3);

In> LaplaceTransform(t,s,t*Sin(2*t)*Exp(-3*t))

Out> (2*(s+3))/(2*(2*(((s+3)/2)^2+1))^2);

In> LaplaceTransform(t,s, BesselJ(3,2*t))

Out> (Sqrt((s/2)^2+1)-s/2)^3/(2*Sqrt((s/2)^2+1));

In> LaplaceTransform(t,s,Exp(t^2)); // not of exponential order

Out> LaplaceTransform(t,s,Exp(t^2));

In> LaplaceTransform(p,q,Ln(p))

Out> -(gamma+Ln(q))/q;

35

Chapter 11

Simplification of expressions

Simplification of expression is a big and non-trivial subject.
Simplification implies that there is a preferred form. In practice
the preferred form depends on the calculation at hand. This
chapter describes the functions offered that allow simplification
of expressions.

Simplify — try to simplify an ex-
pression

(standard library)

Calling format:

Simplify(expr)

Parameters:

expr – expression to simplify

Description:

This function tries to simplify the expression expr as much as
possible. It does this by grouping powers within terms, and then
grouping similar terms.

Examples:

In> a*b*a^2/b-a^3

Out> (b*a^3)/b-a^3;

In> Simplify(a*b*a^2/b-a^3)

Out> 0;

See also: TrigSimpCombine, RadSimp

RadSimp — simplify expression with
nested radicals

(standard library)

Calling format:

RadSimp(expr)

Parameters:

expr – an expression containing nested radicals

Description:

This function tries to write the expression “expr” as a sum of
roots of integers:

√
e1 +

√
e2 + ..., where e1, e2 and so on are

natural numbers. The expression “expr” may not contain free
variables.

It does this by trying all possible combinations for e1, e2, ...
Every possibility is numerically evaluated using N and compared
with the numerical evaluation of “expr”. If the approximations
are equal (up to a certain margin), this possibility is returned.
Otherwise, the expression is returned unevaluated.

Note that due to the use of numerical approximations, there is
a small chance that the expression returned by RadSimp is close
but not equal to expr. The last example underneath illustrates
this problem. Furthermore, if the numerical value of expr is
large, the number of possibilities becomes exorbitantly big so
the evaluation may take very long.

Examples:

In> RadSimp(Sqrt(9+4*Sqrt(2)))

Out> Sqrt(8)+1;

In> RadSimp(Sqrt(5+2*Sqrt(6)) \

+Sqrt(5-2*Sqrt(6)))

Out> Sqrt(12);

In> RadSimp(Sqrt(14+3*Sqrt(3+2

*Sqrt(5-12*Sqrt(3-2*Sqrt(2))))))

Out> Sqrt(2)+3;

But this command may yield incorrect results:

In> RadSimp(Sqrt(1+10^(-6)))

Out> 1;

See also: Simplify, N

FactorialSimplify — Simplify hy-
pergeometric expressions containing
factorials

(standard library)

Calling format:

FactorialSimplify(expression)

Parameters:

expression – expression to simplify

Description:

36

FactorialSimplify takes an expression that may contain fac-
torials, and tries to simplify it. An expression like (n+1)!

n!
would

simplify to n+ 1.

The following steps are taken to simplify:

1. binomials are expanded into factorials

2. the expression is flattened as much as possible, to reduce
it to a sum of simple rational terms

3. expressions like pn

pm
are reduced to pn−m if n − m is an

integer

4. expressions like n!
m!

are simplified if n−m is an integer

The function Simplify is used to determine if the relevant
expressions n−m are integers.

Example:

In> FactorialSimplify((n-k+1)! / (n-k)!)

Out> n+1-k

In> FactorialSimplify(n! / Bin(n,k))

Out> k! *(n-k)!

In> FactorialSimplify(2^(n+1)/2^n)

Out> 2

See also: Simplify, !, Bin

LnExpand — expand a logarithmic ex-
pression using standard logarithm
rules

(standard library)

Calling format:

LnExpand(expr)

Parameters:

expr – the logarithm of an expression

Description:

LnExpand takes an expression of the form ln expr, and applies
logarithm rules to expand this into multiple Ln expressions
where possible. An expression like ln abn would be expanded
to ln a+ n ln b.

If the logarithm of an integer is discovered, it is factorised
using Factors and expanded as though LnExpand had been given
the factorised form. So ln 18 goes to lnx+ 2 ln 3.

Example:

In> LnExpand(Ln(a*b^n))

Out> Ln(a)+Ln(b)*n

In> LnExpand(Ln(a^m/b^n))

Out> Ln(a)*m-Ln(b)*n

In> LnExpand(Ln(60))

Out> 2*Ln(2)+Ln(3)+Ln(5)

In> LnExpand(Ln(60/25))

Out> 2*Ln(2)+Ln(3)-Ln(5)

See also: Ln, LnCombine, Factors

LnCombine — combine logarithmic
expressions using standard loga-
rithm rules

(standard library)

Calling format:

LnCombine(expr)

Parameters:

expr – an expression possibly containing multiple Ln terms to
be combined

Description:

LnCombine finds Ln terms in the expression it is given, and com-
bines them using logarithm rules. It is intended to be the exact
converse of LnExpand.

Example:

In> LnCombine(Ln(a)+Ln(b)*n)

Out> Ln(a*b^n)

In> LnCombine(2*Ln(2)+Ln(3)-Ln(5))

Out> Ln(12/5)

See also: Ln, LnExpand

TrigSimpCombine — combine prod-
ucts of trigonometric functions

(standard library)

Calling format:

TrigSimpCombine(expr)

Parameters:

expr – expression to simplify

Description:

This function applies the product rules of trigonometry, e.g.
cosu sin v = 1

2
(sin (v − u) + sin (v + u)). As a result, all prod-

ucts of the trigonometric functions Cos and Sin disappear. The
function also tries to simplify the resulting expression as much
as possible by combining all similar terms.

This function is used in for instance Integrate, to bring down
the expression into a simpler form that hopefully can be inte-
grated easily.

Examples:

In> PrettyPrinter’Set("PrettyForm");

True

In> TrigSimpCombine(Cos(a)^2+Sin(a)^2)

1

In> TrigSimpCombine(Cos(a)^2-Sin(a)^2)

37

Cos(-2 * a)

Out>

In> TrigSimpCombine(Cos(a)^2*Sin(b))

Sin(b) Sin(-2 * a + b)

-------- + -----------------

2 4

Sin(-2 * a - b)

- -----------------

4

See also: Simplify, Integrate, Expand, Sin, Cos, Tan

38

Chapter 12

Symbolic solvers

By solving one tries to find a mathematical object that meets
certain criteria. This chapter documents the functions that are
available to help find solutions to specific types of problems.

Solve — solve an equation

(standard library)

Calling format:

Solve(eq, var)

Parameters:

eq – equation to solve
var – variable to solve for

Description:

This command tries to solve an equation. If eq does not con-
tain the == operator, it is assumed that the user wants to solve
eq == 0. The result is a list of equations of the form var ==

value, each representing a solution of the given equation. The
Where operator can be used to substitute this solution in an-
other expression. If the given equation eq does not have any
solutions, or if Solve is unable to find any, then an empty list
is returned.

The current implementation is far from perfect. In particular,
the user should keep the following points in mind:

• Solve cannot solve all equations. If it is given a equation
it can not solve, it raises an error via Check. Unfortu-
nately, this is not displayed by the inline pretty-printer; call
PrettyPrinter’Set to change this. If an equation cannot
be solved analytically, you may want to call Newton to get
a numerical solution.

• Systems of equations are not handled yet. For linear sys-
tems, MatrixSolve can be used. The old version of Solve,
with the name OldSolve might be able to solve nonlinear
systems of equations.

• The periodicity of the trigonometric functions Sin, Cos,
and Tan is not taken into account. The same goes for the
(imaginary) periodicity of Exp. This causes Solve to miss
solutions.

• It is assumed that all denominators are nonzero. Hence, a
solution reported by Solve may in fact fail to be a solution
because a denominator vanishes.

• In general, it is wise not to have blind trust in the results
returned by Solve. A good strategy is to substitute the
solutions back in the equation.

Examples:

First a simple example, where everything works as it should.
The quadratic equation x2 + x = 0 is solved. Then the result is
checked by substituting it back in the quadratic.

In> quadratic := x^2+x;

Out> x^2+x;

In> Solve(quadratic, x);

Out> {x==0,x==(-1)};

In> quadratic Where %;

Out> {0,0};

If one tries to solve the equation exp (x) = sinx, one finds
that Solve can not do this.

In> PrettyPrinter’Set("DefaultPrint");

Out> True;

In> Solve(Exp(x) == Sin(x), x);

Error: Solve’Fails: cannot solve equation Exp(x)-Sin(x) for x

Out> {};

The equation cosx = 1
2

has an infinite number of solutions,

namely x =
(
2k + 1

3

)
π and x =

(
2k − 1

3

)
π for any integer k.

However, Solve only reports the solutions with k = 0.

In> Solve(Cos(x) == 1/2, x);

Out> {x==Pi/3,x== -Pi/3};

For the equation x
sin x

= 0, a spurious solution at x = 0 is
returned. However, the fraction is undefined at that point.

In> Solve(x / Sin(x) == 0, x);

Out> {x==0};

At first sight, the equation
√
x = a seems to have the solution

x = a2. However, this is not true for eg. a = −1.

In> PrettyPrinter’Set("DefaultPrint");

Out> True;

In> Solve(Sqrt(x) == a, x);

Error: Solve’Fails: cannot solve equation Sqrt(x)-a for x

Out> {};

In> Solve(Sqrt(x) == 2, x);

Out> {x==4};

In> Solve(Sqrt(x) == -1, x);

Out> {};

See also: Check, MatrixSolve, Newton, OldSolve,
PrettyPrinter’Set, PSolve, Where, ==

39

OldSolve — old version of Solve

(standard library)

Calling format:

OldSolve(eq, var)

OldSolve(eqlist, varlist)

Parameters:

eq – single identity equation
var – single variable
eqlist – list of identity equations
varlist – list of variables

Description:

This is an older version of Solve. It is retained for two rea-
sons. The first one is philosophical: it is good to have multiple
algorithms available. The second reason is more practical: the
newer version cannot handle systems of equations, but OldSolve
can.

This command tries to solve one or more equations. Use
the first form to solve a single equation and the second one for
systems of equations.

The first calling sequence solves the equation “eq” for the
variable “var”. Use the == operator to form the equation. The
value of “var” which satisfies the equation, is returned. Note
that only one solution is found and returned.

To solve a system of equations, the second form should be
used. It solves the system of equations contained in the list
“eqlist” for the variables appearing in the list “varlist”. A list
of results is returned, and each result is a list containing the
values of the variables in “varlist”. Again, at most a single
solution is returned.

The task of solving a single equation is simply delegated to
SuchThat. Multiple equations are solved recursively: firstly, an
equation is sought in which one of the variables occurs exactly
once; then this equation is solved with SuchThat; and finally
the solution is substituted in the other equations by Eliminate

decreasing the number of equations by one. This suffices for all
linear equations and a large group of simple nonlinear equations.

Examples:

In> OldSolve(a+x*y==z,x)

Out> (z-a)/y;

In> OldSolve({a*x+y==0,x+z==0},{x,y})

Out> {{-z,z*a}};

This means that “x = (z-a)/y” is a solution of the first equa-
tion and that “x = -z”, “y = z*a” is a solution of the systems
of equations in the second command.

An example which OldSolve cannot solve:

In> OldSolve({x^2-x == y^2-y,x^2-x == y^3+y},{x,y});

Out> {};

See also: Solve, SuchThat, Eliminate, PSolve, ==

SuchThat — special purpose solver

(standard library)

Calling format:

SuchThat(expr, var)

Parameters:

expr – expression to make zero

var – variable (or subexpression) to solve for

Description:

This functions tries to find a value of the variable “var” which
makes the expression “expr” zero. It is also possible to pass a
subexpression as “var”, in which case SuchThat will try to solve
for that subexpression.

Basically, only expressions in which “var” occurs only once
are handled; in fact, SuchThat may even give wrong results if
the variables occurs more than once. This is a consequence of
the implementation, which repeatedly applies the inverse of the
top function until the variable “var” is reached.

Examples:

In> SuchThat(a+b*x, x)

Out> (-a)/b;

In> SuchThat(Cos(a)+Cos(b)^2, Cos(b))

Out> Cos(a)^(1/2);

In> A:=Expand(a*x+b*x+c, x)

Out> (a+b)*x+c;

In> SuchThat(A, x)

Out> (-c)/(a+b);

See also: Solve, OldSolve, Subst, Simplify

Eliminate — substitute and simplify

(standard library)

Calling format:

Eliminate(var, value, expr)

Parameters:

var – variable (or subexpression) to substitute

value – new value of ”var”

expr – expression in which the substitution should take place

Description:

This function uses Subst to replace all instances of the variable
(or subexpression) “var” in the expression “expr” with “value”,
calls Simplify to simplify the resulting expression, and returns
the result.

Examples:

In> Subst(Cos(b), c) (Sin(a)+Cos(b)^2/c)

Out> Sin(a)+c^2/c;

In> Eliminate(Cos(b), c, Sin(a)+Cos(b)^2/c)

Out> Sin(a)+c;

See also: SuchThat, Subst, Simplify

40

PSolve — solve a polynomial equa-
tion

(standard library)

Calling format:

PSolve(poly, var)

Parameters:

poly – a polynomial in ”var”
var – a variable

Description:

This commands returns a list containing the roots of “poly”,
considered as a polynomial in the variable “var”. If there is
only one root, it is not returned as a one-entry list but just by
itself. A double root occurs twice in the result, and similarly for
roots of higher multiplicity. All polynomials of degree up to 4
are handled.

Examples:

In> PSolve(b*x+a,x)

Out> -a/b;

In> PSolve(c*x^2+b*x+a,x)

Out> {(Sqrt(b^2-4*c*a)-b)/(2*c),(-(b+

Sqrt(b^2-4*c*a)))/(2*c)};

See also: Solve, Factor

MatrixSolve — solve a system of
equations

(standard library)

Calling format:

MatrixSolve(A,b)

Parameters:

A – coefficient matrix
b – row vector

Description:

MatrixSolve solves the matrix equations A*x = b using Gaus-
sian Elimination with Backward substitution. If your matrix is
triangular or diagonal, it will be recognized as such and a faster
algorithm will be used.

Examples:

In> A:={{2,4,-2,-2},{1,2,4,-3},{-3,-3,8,-2},{-1,1,6,-3}};

Out> {{2,4,-2,-2},{1,2,4,-3},{-3,-3,8,-2},{-1,1,6,-3}};

In> b:={-4,5,7,7};

Out> {-4,5,7,7};

In> MatrixSolve(A,b);

Out> {1,2,3,4};

41

Chapter 13

Numeric solvers

Newton — solve an equation numeri-
cally with Newton’s method

(standard library)

Calling format:

Newton(expr, var, initial, accuracy)

Newton(expr, var, initial, accuracy,min,max)

Parameters:

expr – an expression to find a zero for
var – free variable to adjust to find a zero
initial – initial value for ”var” to use in the search
accuracy – minimum required accuracy of the result
min – minimum value for ”var” to use in the search
max – maximum value for ”var” to use in the search

Description:

This function tries to numerically find a zero of the expression
expr, which should depend only on the variable var. It uses the
value initial as an initial guess.

The function will iterate using Newton’s method until it esti-
mates that it has come within a distance accuracy of the correct
solution, and then it will return its best guess. In particular, it
may loop forever if the algorithm does not converge.

When min and max are supplied, the Newton iteration takes
them into account by returning Fail if it failed to find a root in
the given range. Note this doesn’t mean there isn’t a root, just
that this algorithm failed to find it due to the trial values going
outside of the bounds.

Examples:

In> Newton(Sin(x),x,3,0.0001)

Out> 3.1415926535;

In> Newton(x^2-1,x,2,0.0001,-5,5)

Out> 1;

In> Newton(x^2+1,x,2,0.0001,-5,5)

Out> Fail;

See also: Solve, NewtonNum

FindRealRoots — find the real roots
of a polynomial

(standard library)

Calling format:

FindRealRoots(p)

Parameters:

p - a polynomial in x

Description:

Return a list with the real roots of p. It tries to find the real-
valued roots, and thus requires numeric floating point calcula-
tions. The precision of the result can be improved by increasing
the calculation precision.

Examples:

In> p:=Expand((x+3.1)^5*(x-6.23))

Out> x^6+9.27*x^5-0.465*x^4-300.793*x^3-

1394.2188*x^2-2590.476405*x-1783.5961073;

In> FindRealRoots(p)

Out> {-3.1,6.23};

See also: SquareFree, NumRealRoots, MinimumBound,
MaximumBound, Factor

NumRealRoots — return the number
of real roots of a polynomial

(standard library)

Calling format:

NumRealRoots(p)

Parameters:

p - a polynomial in x

Description:

Returns the number of real roots of a polynomial p. The poly-
nomial must use the variable x and no other variables.

Examples:

In> NumRealRoots(x^2-1)

Out> 2;

In> NumRealRoots(x^2+1)

Out> 0;

See also: FindRealRoots, SquareFree, MinimumBound,
MaximumBound, Factor

42

MinimumBound — return lower bounds
on the absolute values of real roots
of a polynomial

MaximumBound — return upper
bounds on the absolute values of
real roots of a polynomial

(standard library)

Calling format:

MinimumBound(p)

MaximumBound(p)

Parameters:

p - a polynomial in x

Description:

Return minimum and maximum bounds for the absolute values
of the real roots of a polynomial p. The polynomial has to be
converted to one with rational coefficients first, and be made
square-free. The polynomial must use the variable x.

Examples:

In> p:=SquareFree(Rationalize((x-3.1)*(x+6.23)))

Out> (-40000*x^2-125200*x+772520)/870489;

In> MinimumBound(p)

Out> 5000000000/2275491039;

In> N(%)

Out> 2.1973279236;

In> MaximumBound(p)

Out> 10986639613/1250000000;

In> N(%)

Out> 8.7893116904;

See also: SquareFree, NumRealRoots, FindRealRoots, Factor

43

Chapter 14

Propositional logic theorem prover

CanProve — try to prove statement

(standard library)

Calling format:

CanProve(proposition)

Parameters:

proposition – an expression with logical operations

Description:

Yacas has a small built-in propositional logic theorem prover.
It can be invoked with a call to CanProve.

An example of a proposition is: “if a implies b and b im-
plies c then a implies c”. Yacas supports the following logical
operations:

Not : negation, read as ”not”
And : conjunction, read as ”and”
Or : disjunction, read as ”or”
=> : implication, read as ”implies”
The abovementioned proposition would be represented by the

following expression,

((a=>b) And (b=>c)) => (a=>c)

Yacas can prove that is correct by applying CanProve to it:

In> CanProve(((a=>b) And (b=>c)) => (a=>c))

Out> True;

It does this in the following way: in order to prove a propo-
sition p, it suffices to prove that ¬p is false. It continues to
simplify ¬p using the rules:

Not (Not x) --> x

(eliminate double negation),

x=>y --> Not x Or y

(eliminate implication),

Not (x And y) --> Not x Or Not y

(De Morgan’s law),

Not (x Or y) --> Not x And Not y

(De Morgan’s law),

(x And y) Or z --> (x Or z) And (y Or z)

(distribution),

x Or (y And z) --> (x Or y) And (x Or z)

(distribution), and the obvious other rules, such as,

True Or x --> True

etc. The above rules will translate a proposition into a form

(p1 Or p2 Or ...) And (q1 Or q2

Or ...) And ...

If any of the clauses is false, the entire expression will be false.
In the next step, clauses are scanned for situations of the form:

(p Or Y) And (Not p Or Z) --> (Y Or Z)

If this combination (Y Or Z) is empty, it is false, and thus the
entire proposition is false.

As a last step, the algorithm negates the result again. This
has the added advantage of simplifying the expression further.

Examples:

In> CanProve(a Or Not a)

Out> True;

In> CanProve(True Or a)

Out> True;

In> CanProve(False Or a)

Out> a;

In> CanProve(a And Not a)

Out> False;

In> CanProve(a Or b Or (a And b))

Out> a Or b;

See also: True, False, And, Or, Not

44

Chapter 15

Differential Equations

In this chapter, some facilities for solving differential equa-
tions are described. Currently only simple equations without
auxiliary conditions are supported.

OdeSolve — general ODE solver

(standard library)

Calling format:

OdeSolve(expr1==expr2)

Parameters:

expr1,expr2 – expressions containing a function to solve for

Description:

This function currently can solve second order homogeneous lin-
ear real constant coefficient equations. The solution is returned
with unique constants generated by UniqueConstant. The roots
of the auxiliary equation are used as the arguments of exponen-
tials. If the roots are complex conjugate pairs, then the solution
returned is in the form of exponentials, sines and cosines.

First and second derivatives are entered as y’,y’’. Higher
order derivatives may be entered as y(n), where n is any integer.

Examples:

In> OdeSolve(y’’ + y == 0)

Out> C42*Sin(x)+C43*Cos(x);

In> OdeSolve(2*y’’ + 3*y’ + 5*y == 0)

Out> Exp(((-3)*x)/4)*(C78*Sin(Sqrt(31/16)*x)+C79*Cos(Sqrt(31/16)*x));

In> OdeSolve(y’’ - 4*y == 0)

Out> C132*Exp((-2)*x)+C136*Exp(2*x);

In> OdeSolve(y’’ +2*y’ + y == 0)

Out> (C183+C184*x)*Exp(-x);

See also: Solve, RootsWithMultiples

OdeTest — test the solution of an
ODE

(standard library)

Calling format:

OdeTest(eqn,testsol)

Parameters:

eqn – equation to test
testsol – test solution

Description:

This function automates the verification of the solution of an
ODE. It can also be used to quickly see how a particular equa-
tion operates on a function.

Examples:

In> OdeTest(y’’+y,Sin(x)+Cos(x))

Out> 0;

In> OdeTest(y’’+2*y,Sin(x)+Cos(x))

Out> Sin(x)+Cos(x);

See also: OdeSolve

OdeOrder — return order of an ODE

(standard library)

Calling format:

OdeOrder(eqn)

Parameters:

eqn – equation

Description:

This function returns the order of the differential equation,
which is order of the highest derivative. If no derivatives ap-
pear, zero is returned.

Examples:

In> OdeOrder(y’’ + 2*y’ == 0)

Out> 2;

In> OdeOrder(Sin(x)*y(5) + 2*y’ == 0)

Out> 5;

In> OdeOrder(2*y + Sin(y) == 0)

Out> 0;

See also: OdeSolve

45

Chapter 16

Linear Algebra

This chapter describes the commands for doing linear algebra.
They can be used to manipulate vectors, represented as lists,
and matrices, represented as lists of lists.

Dot, . — get dot product of tensors

(standard library)

Calling format:

Dot(t1,t2)

t1 . t2

Precedence: 30

Parameters:

t1,t2 – tensor lists (currently only vectors and matrices are
supported)

Description:

Dot returns the dot (aka inner) product of two tensors t1 and
t2. The last index of t1 and the first index of t2 are con-
tracted. Currently Dot works only for vectors and matrices.
Dot-multiplication of two vectors, a matrix with a vector (and
vice versa) or two matrices yields either a scalar, a vector or a
matrix.

Examples:

In> Dot({1,2},{3,4})

Out> 11;

In> Dot({{1,2},{3,4}},{5,6})

Out> {17,39};

In> Dot({5,6},{{1,2},{3,4}})

Out> {23,34};

In> Dot({{1,2},{3,4}},{{5,6},{7,8}})

Out> {{19,22},{43,50}};

Or, using the "."-Operator:

In> {1,2} . {3,4}

Out> 11;

In> {{1,2},{3,4}} . {5,6}

Out> {17,39};

In> {5,6} . {{1,2},{3,4}}

Out> {23,34};

In> {{1,2},{3,4}} . {{5,6},{7,8}}

Out> {{19,22},{43,50}};

See also: Outer, Cross, IsScalar, IsVector, IsMatrix

InProduct — inner product of vec-
tors (deprecated)

(standard library)

Calling format:

InProduct(a,b)

Parameters:

a, b – vectors of equal length

Description:

The inner product of the two vectors “a” and “b” is returned.
The vectors need to have the same size.

This function is superceded by the . operator.

Examples:

In> {a,b,c} . {d,e,f};

Out> a*d+b*e+c*f;

See also: Dot, CrossProduct

CrossProduct — outer product of
vectors

(standard library)

Calling format:

CrossProduct(a,b)

a X b

Precedence: 30

Parameters:

a, b – three-dimensional vectors

Description:

The cross product of the vectors “a” and “b” is returned. The
result is perpendicular to both “a” and “b” and its length is the
product of the lengths of the vectors. Both “a” and “b” have
to be three-dimensional.

Examples:

In> {a,b,c} X {d,e,f};

Out> {b*f-c*e,c*d-a*f,a*e-b*d};

See also: InProduct

46

Outer, o — get outer tensor product

(standard library)

Calling format:

Outer(t1,t2)

t1 o t2

Precedence: 30

Parameters:

t1,t2 – tensor lists (currently only vectors are supported)

Description:

Outer returns the outer product of two tensors t1 and t2. Cur-
rently Outer work works only for vectors, i.e. tensors of rank 1.
The outer product of two vectors yields a matrix.

Examples:

In> Outer({1,2},{3,4,5})

Out> {{3,4,5},{6,8,10}};

In> Outer({a,b},{c,d})

Out> {{a*c,a*d},{b*c,b*d}};

Or, using the "o"-Operator:

In> {1,2} o {3,4,5}

Out> {{3,4,5},{6,8,10}};

In> {a,b} o {c,d}

Out> {{a*c,a*d},{b*c,b*d}};

See also: Dot, Cross

ZeroVector — create a vector with
all zeroes

(standard library)

Calling format:

ZeroVector(n)

Parameters:

n – length of the vector to return

Description:

This command returns a vector of length “n”, filled with zeroes.

Examples:

In> ZeroVector(4)

Out> {0,0,0,0};

See also: BaseVector, ZeroMatrix, IsZeroVector

BaseVector — base vector

(standard library)

Calling format:

BaseVector(k, n)

Parameters:

k – index of the base vector to construct
n – dimension of the vector

Description:

This command returns the “k”-th base vector of dimension “n”.
This is a vector of length “n” with all zeroes except for the
“k”-th entry, which contains a 1.

Examples:

In> BaseVector(2,4)

Out> {0,1,0,0};

See also: ZeroVector, Identity

Identity — make identity matrix

(standard library)

Calling format:

Identity(n)

Parameters:

n – size of the matrix

Description:

This commands returns the identity matrix of size “n” by “n”.
This matrix has ones on the diagonal while the other entries are
zero.

Examples:

In> Identity(3)

Out> {{1,0,0},{0,1,0},{0,0,1}};

See also: BaseVector, ZeroMatrix, DiagonalMatrix

ZeroMatrix — make a zero matrix

(standard library)

Calling format:

ZeroMatrix(n)

ZeroMatrix(n, m)

Parameters:

n – number of rows
m – number of columns

Description:

This command returns a matrix with n rows and m columns,
completely filled with zeroes. If only given one parameter, it
returns the square n by n zero matrix.

Examples:

In> ZeroMatrix(3,4)

Out> {{0,0,0,0},{0,0,0,0},{0,0,0,0}};

In> ZeroMatrix(3)

Out> {{0,0,0},{0,0,0},{0,0,0}};

See also: ZeroVector, Identity

47

Diagonal — extract the diagonal
from a matrix

(standard library)

Calling format:

Diagonal(A)

Parameters:

A – matrix

Description:

This command returns a vector of the diagonal components of
the matrix A.

Examples:

In> Diagonal(5*Identity(4))

Out> {5,5,5,5};

In> Diagonal(HilbertMatrix(3))

Out> {1,1/3,1/5};

See also: DiagonalMatrix, IsDiagonal

DiagonalMatrix — construct a diag-
onal matrix

(standard library)

Calling format:

DiagonalMatrix(d)

Parameters:

d – list of values to put on the diagonal

Description:

This command constructs a diagonal matrix, that is a square
matrix whose off-diagonal entries are all zero. The elements of
the vector “d” are put on the diagonal.

Examples:

In> DiagonalMatrix(1 .. 4)

Out> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,4}};

See also: Identity, ZeroMatrix

OrthogonalBasis — create an orthog-
onal basis

(standard library)

Calling format:

OrthogonalBasis(W)

Parameters:

W - A linearly independent set of row vectors (aka a matrix)

Description:

Given a linearly independent set W (constructed of rows vec-
tors), this command returns an orthogonal basis V for W, which
means that span(V) = span(W) and InProduct(V[i],V[j]) =

0 when i != j. This function uses the Gram-Schmidt orthogo-
nalization process.

Examples:

In> OrthogonalBasis({{1,1,0},{2,0,1},{2,2,1}})

Out> {{1,1,0},{1,-1,1},{-1/3,1/3,2/3}};

See also: OrthonormalBasis, InProduct

OrthonormalBasis — create an or-
thonormal basis

(standard library)

Calling format:

OrthonormalBasis(W)

Parameters:

W - A linearly independent set of row vectors (aka a matrix)

Description:

Given a linearly independent set W (constructed of rows vectors),
this command returns an orthonormal basis V for W. This is done
by first using OrthogonalBasis(W), then dividing each vector by
its magnitude, so as the give them unit length.

Examples:

In> OrthonormalBasis({{1,1,0},{2,0,1},{2,2,1}})

Out> {{Sqrt(1/2),Sqrt(1/2),0},{Sqrt(1/3),-Sqrt(1/3),Sqrt(1/3)},

{-Sqrt(1/6),Sqrt(1/6),Sqrt(2/3)}};

See also: OrthogonalBasis, InProduct, Normalize

Normalize — normalize a vector

(standard library)

Calling format:

Normalize(v)

Parameters:

v – a vector

Description:

Return the normalized (unit) vector parallel to v: a vector hav-
ing the same direction but with length 1.

Examples:

In> v:=Normalize({3,4})

Out> {3/5,4/5};

In> v . v

Out> 1;

See also: InProduct, CrossProduct

48

Transpose — get transpose of a ma-
trix

(standard library)

Calling format:

Transpose(M)

Parameters:

M – a matrix

Description:

Transpose returns the transpose of a matrix M . Because ma-
trices are just lists of lists, this is a useful operation too for
lists.

Examples:

In> Transpose({{a,b}})

Out> {{a},{b}};

Determinant — determinant of a ma-
trix

(standard library)

Calling format:

Determinant(M)

Parameters:

M – a matrix

Description:

Returns the determinant of a matrix M.

Examples:

In> A:=DiagonalMatrix(1 .. 4)

Out> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,4}};

In> Determinant(A)

Out> 24;

Trace — trace of a matrix

(standard library)

Calling format:

Trace(M)

Parameters:

M – a matrix

Description:

Trace returns the trace of a matrix M (defined as the sum of
the elements on the diagonal of the matrix).

Examples:

In> A:=DiagonalMatrix(1 .. 4)

Out> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,4}};

In> Trace(A)

Out> 10;

Inverse — get inverse of a matrix

(standard library)

Calling format:

Inverse(M)

Parameters:

M – a matrix

Description:

Inverse returns the inverse of matrix M . The determinant of
M should be non-zero. Because this function uses Determinant
for calculating the inverse of a matrix, you can supply matrices
with non-numeric (symbolic) matrix elements.

Examples:

In> A:=DiagonalMatrix({a,b,c})

Out> {{a,0,0},{0,b,0},{0,0,c}};

In> B:=Inverse(A)

Out> {{(b*c)/(a*b*c),0,0},{0,(a*c)/(a*b*c),0},

{0,0,(a*b)/(a*b*c)}};

In> Simplify(B)

Out> {{1/a,0,0},{0,1/b,0},{0,0,1/c}};

See also: Determinant

Minor — get principal minor of a ma-
trix

(standard library)

Calling format:

Minor(M,i,j)

Parameters:

M – a matrix
i, j - positive integers

Description:

Minor returns the minor of a matrix around the element (i, j).
The minor is the determinant of the matrix obtained from M
by deleting the i-th row and the j-th column.

Examples:

In> A := {{1,2,3}, {4,5,6}, {7,8,9}};

Out> {{1,2,3},{4,5,6},{7,8,9}};

In> PrettyForm(A);

/ \

| (1) (2) (3) |

| |

| (4) (5) (6) |

| |

| (7) (8) (9) |

\ /

Out> True;

In> Minor(A,1,2);

Out> -6;

In> Determinant({{2,3}, {8,9}});

Out> -6;

See also: CoFactor, Determinant, Inverse

49

CoFactor — cofactor of a matrix

(standard library)

Calling format:

CoFactor(M,i,j)

Parameters:

M – a matrix

i, j - positive integers

Description:

CoFactor returns the cofactor of a matrix around the element
(i, j). The cofactor is the minor times (−1)i+j .

Examples:

In> A := {{1,2,3}, {4,5,6}, {7,8,9}};

Out> {{1,2,3},{4,5,6},{7,8,9}};

In> PrettyForm(A);

/ \

| (1) (2) (3) |

| |

| (4) (5) (6) |

| |

| (7) (8) (9) |

\ /

Out> True;

In> CoFactor(A,1,2);

Out> 6;

In> Minor(A,1,2);

Out> -6;

In> Minor(A,1,2) * (-1)^(1+2);

Out> 6;

See also: Minor, Determinant, Inverse

MatrixPower — get nth power of a
square matrix

(standard library)

Calling format:

MatrixPower(mat,n)

Parameters:

mat – a square matrix

n – an integer

Description:

MatrixPower(mat,n) returns the nth power of a square matrix
mat. For positive n it evaluates dot products of mat with itself.
For negative n the nth power of the inverse of mat is returned.
For n=0 the identity matrix is returned.

Example:

In> A:={{1,2},{3,4}}

Out> {{1,2},{3,4}};

In> MatrixPower(A,0)

Out> {{1,0},{0,1}};

In> MatrixPower(A,1)

Out> {{1,2},{3,4}};

In> MatrixPower(A,3)

Out> {{37,54},{81,118}};

In> MatrixPower(A,-3)

Out> {{-59/4,27/4},{81/8,-37/8}};

See also: IsSquareMatrix, Inverse, Dot

SolveMatrix — solve a linear system

(standard library)

Calling format:

SolveMatrix(M,v)

Parameters:

M – a matrix
v – a vector

Description:

SolveMatrix returns the vector x that satisfies the equation
Mx = v. The determinant of M should be non-zero.

Examples:

In> A := {{1,2}, {3,4}};

Out> {{1,2},{3,4}};

In> v := {5,6};

Out> {5,6};

In> x := SolveMatrix(A, v);

Out> {-4,9/2};

In> A * x;

Out> {5,6};

See also: Inverse, Solve, PSolve, Determinant

CharacteristicEquation — get char-
acteristic polynomial of a matrix

(standard library)

Calling format:

CharacteristicEquation(matrix,var)

Parameters:

matrix – a matrix
var – a free variable

Description:

CharacteristicEquation returns the characteristic equation of
“matrix”, using “var”. The zeros of this equation are the eigen-
values of the matrix, Det(matrix-I*var);

Examples:

In> A:=DiagonalMatrix({a,b,c})

Out> {{a,0,0},{0,b,0},{0,0,c}};

In> B:=CharacteristicEquation(A,x)

Out> (a-x)*(b-x)*(c-x);

In> Expand(B,x)

Out> (b+a+c)*x^2-x^3-((b+a)*c+a*b)*x+a*b*c;

See also: EigenValues, EigenVectors

50

EigenValues — get eigenvalues of a
matrix

(standard library)

Calling format:

EigenValues(matrix)

Parameters:

matrix – a square matrix

Description:

EigenValues returns the eigenvalues of a matrix. The eigenval-
ues x of a matrix M are the numbers such that Mv = xv for
some vector.

It first determines the characteristic equation, and then fac-
torizes this equation, returning the roots of the characteristic
equation Det(matrix-x*identity).

Examples:

In> M:={{1,2},{2,1}}

Out> {{1,2},{2,1}};

In> EigenValues(M)

Out> {3,-1};

See also: EigenVectors, CharacteristicEquation

EigenVectors — get eigenvectors of a
matrix

(standard library)

Calling format:

EigenVectors(A,eigenvalues)

Parameters:

matrix – a square matrix

eigenvalues – list of eigenvalues as returned by EigenValues

Description:

EigenVectors returns a list of the eigenvectors of a matrix. It
uses the eigenvalues and the matrix to set up n equations with n
unknowns for each eigenvalue, and then calls Solve to determine
the values of each vector.

Examples:

In> M:={{1,2},{2,1}}

Out> {{1,2},{2,1}};

In> e:=EigenValues(M)

Out> {3,-1};

In> EigenVectors(M,e)

Out> {{-ki2/ -1,ki2},{-ki2,ki2}};

See also: EigenValues, CharacteristicEquation

Sparsity — get the sparsity of a ma-
trix

(standard library)

Calling format:

Sparsity(matrix)

Parameters:

matrix – a matrix

Description:

The function Sparsity returns a number between 0 and 1 which
represents the percentage of zero entries in the matrix. Although
there is no definite critical value, a sparsity of 0.75 or more is
almost universally considered a “sparse” matrix. These type of
matrices can be handled in a different manner than “full” ma-
trices which speedup many calculations by orders of magnitude.

Examples:

In> Sparsity(Identity(2))

Out> 0.5;

In> Sparsity(Identity(10))

Out> 0.9;

In> Sparsity(HankelMatrix(10))

Out> 0.45;

In> Sparsity(HankelMatrix(100))

Out> 0.495;

In> Sparsity(HilbertMatrix(10))

Out> 0;

In> Sparsity(ZeroMatrix(10,10))

Out> 1;

Cholesky — find the Cholesky De-
composition

(standard library)

Calling format:

Cholesky(A)

Parameters:

A – a square positive definite matrix

Description:

Cholesky returns a upper triangular matrix R such that
Transpose(R)*R = A. The matrix A must be positive definite,
Cholesky will notify the user if the matrix is not. Some families
of positive definite matrices are all symmetric matrices, diagonal
matrices with positive elements and Hilbert matrices.

Examples:

In> A:={{4,-2,4,2},{-2,10,-2,-7},{4,-2,8,4},{2,-7,4,7}}

Out> {{4,-2,4,2},{-2,10,-2,-7},{4,-2,8,4},{2,-7,4,7}};

In> R:=Cholesky(A);

Out> {{2,-1,2,1},{0,3,0,-2},{0,0,2,1},{0,0,0,1}};

In> Transpose(R)*R = A

Out> True;

51

In> Cholesky(4*Identity(5))

Out> {{2,0,0,0,0},{0,2,0,0,0},{0,0,2,0,0},{0,0,0,2,0},{0,0,0,0,2}};

In> Cholesky(HilbertMatrix(3))

Out> {{1,1/2,1/3},{0,Sqrt(1/12),Sqrt(1/12)},{0,0,Sqrt(1/180)}};

In> Cholesky(ToeplitzMatrix({1,2,3}))

In function "Check" :

CommandLine(1) : "Cholesky: Matrix is not positive definite"

See also: IsSymmetric, IsDiagonal, Diagonal

52

Chapter 17

Predicates related to matrices

IsScalar — test for a scalar

(standard library)

Calling format:

IsScalar(expr)

Parameters:

expr – a mathematical object

Description:

IsScalar returns True if expr is a scalar, False otherwise.
Something is considered to be a scalar if it’s not a list.

Examples:

In> IsScalar(7)

Out> True;

In> IsScalar(Sin(x)+x)

Out> True;

In> IsScalar({x,y})

Out> False;

See also: IsList, IsVector, IsMatrix

IsVector — test for a vector

(standard library)

Calling format:

IsVector(expr)

IsVector(pred,expr)

Parameters:

expr – expression to test
pred – predicate test (e.g. IsNumber, IsInteger, ...)

Description:

IsVector(expr) returns True if expr is a vector, False oth-
erwise. Something is considered to be a vector if it’s a list of
scalars. IsVector(pred,expr) returns True if expr is a vec-
tor and if the predicate test pred returns True when applied to
every element of the vector expr, False otherwise.

Examples:

In> IsVector({a,b,c})

Out> True;

In> IsVector({a,{b},c})

Out> False;

In> IsVector(IsInteger,{1,2,3})

Out> True;

In> IsVector(IsInteger,{1,2.5,3})

Out> False;

See also: IsList, IsScalar, IsMatrix

IsMatrix — test for a matrix

(standard library)

Calling format:

IsMatrix(expr)

IsMatrix(pred,expr)

Parameters:

expr – expression to test

pred – predicate test (e.g. IsNumber, IsInteger, ...)

Description:

IsMatrix(expr) returns True if expr is a matrix, False oth-
erwise. Something is considered to be a matrix if it’s a list of
vectors of equal length. IsMatrix(pred,expr) returns True if
expr is a matrix and if the predicate test pred returns True when
applied to every element of the matrix expr, False otherwise.

Examples:

In> IsMatrix(1)

Out> False;

In> IsMatrix({1,2})

Out> False;

In> IsMatrix({{1,2},{3,4}})

Out> True;

In> IsMatrix(IsRational,{{1,2},{3,4}})

Out> False;

In> IsMatrix(IsRational,{{1/2,2/3},{3/4,4/5}})

Out> True;

See also: IsList, IsVector

53

IsSquareMatrix — test for a square
matrix

(standard library)

Calling format:

IsSquareMatrix(expr)

IsSquareMatrix(pred,expr)

Parameters:

expr – expression to test
pred – predicate test (e.g. IsNumber, IsInteger, ...)

Description:

IsSquareMatrix(expr) returns True if expr is a square matrix,
False otherwise. Something is considered to be a square matrix
if it’s a matrix having the same number of rows and columns.
IsMatrix(pred,expr) returns True if expr is a square matrix
and if the predicate test pred returns True when applied to
every element of the matrix expr, False otherwise.

Examples:

In> IsSquareMatrix({{1,2},{3,4}});

Out> True;

In> IsSquareMatrix({{1,2,3},{4,5,6}});

Out> False;

In> IsSquareMatrix(IsBoolean,{{1,2},{3,4}});

Out> False;

In> IsSquareMatrix(IsBoolean,{{True,False},{False,True}});

Out> True;

See also: IsMatrix

IsHermitian — test for a Hermitian
matrix

(standard library)

Calling format:

IsHermitian(A)

Parameters:

A – a square matrix

Description:

IsHermitian(A) returns True if A is Hermitian and False other-
wise. A is a Hermitian matrix iff Conjugate(Transpose A)=A.
If A is a real matrix, it must be symmetric to be Hermitian.

Examples:

In> IsHermitian({{0,I},{-I,0}})

Out> True;

In> IsHermitian({{0,I},{2,0}})

Out> False;

See also: IsUnitary

IsOrthogonal — test for an orthogo-
nal matrix

(standard library)

Calling format:

IsOrthogonal(A)

Parameters:

A – square matrix

Description:

IsOrthogonal(A) returns True if A is orthogonal and False oth-
erwise. A is orthogonal iff A*Transpose(A) = Identity, or equiv-
alently Inverse(A) = Transpose(A).

Examples:

In> A := {{1,2,2},{2,1,-2},{-2,2,-1}};

Out> {{1,2,2},{2,1,-2},{-2,2,-1}};

In> PrettyForm(A/3)

/ \

| / 1 \ / 2 \ / 2 \ |

| | - | | - | | - | |

| \ 3 / \ 3 / \ 3 / |

| |

| / 2 \ / 1 \ / -2 \ |

| | - | | - | | -- | |

| \ 3 / \ 3 / \ 3 / |

| |

| / -2 \ / 2 \ / -1 \ |

| | -- | | - | | -- | |

| \ 3 / \ 3 / \ 3 / |

\ /

Out> True;

In> IsOrthogonal(A/3)

Out> True;

IsDiagonal — test for a diagonal ma-
trix

(standard library)

Calling format:

IsDiagonal(A)

Parameters:

A – a matrix

Description:

IsDiagonal(A) returns True if A is a diagonal square matrix
and False otherwise.

Examples:

In> IsDiagonal(Identity(5))

Out> True;

In> IsDiagonal(HilbertMatrix(5))

Out> False;

54

IsLowerTriangular — test for a lower
triangular matrix

IsUpperTriangular — test for an up-
per triangular matrix

(standard library)

Calling format:

IsLowerTriangular(A)

IsUpperTriangular(A)

Parameters:

A – a matrix

Description:

A lower/upper triangular matrix is a square matrix which has
all zero entries above/below the diagonal.

IsLowerTriangular(A) returns True if A is a lower triangular
matrix and False otherwise. IsUpperTriangular(A) returns
True if A is an upper triangular matrix and False otherwise.

Examples:

In> IsUpperTriangular(Identity(5))

Out> True;

In> IsLowerTriangular(Identity(5))

Out> True;

In> IsLowerTriangular({{1,2},{0,1}})

Out> False;

In> IsUpperTriangular({{1,2},{0,1}})

Out> True;

A non-square matrix cannot be triangular:

In> IsUpperTriangular({{1,2,3},{0,1,2}})

Out> False;

See also: IsDiagonal

IsSymmetric — test for a symmetric
matrix

(standard library)

Calling format:

IsSymmetric(A)

Parameters:

A – a matrix

Description:

IsSymmetric(A) returns True if A is symmetric and False oth-
erwise. A is symmetric iff Transpose (A) =A.

Examples:

In> A := {{1,0,0,0,1},{0,2,0,0,0},{0,0,3,0,0},

{0,0,0,4,0},{1,0,0,0,5}};

In> PrettyForm(A)

/ \

| (1) (0) (0) (0) (1) |

| |

| (0) (2) (0) (0) (0) |

| |

| (0) (0) (3) (0) (0) |

| |

| (0) (0) (0) (4) (0) |

| |

| (1) (0) (0) (0) (5) |

\ /

Out> True;

In> IsSymmetric(A)

Out> True;

See also: IsHermitian, IsSkewSymmetric

IsSkewSymmetric — test for a skew-
symmetric matrix

(standard library)

Calling format:

IsSkewSymmetric(A)

Parameters:

A – a square matrix

Description:

IsSkewSymmetric(A) returns True if A is skew symmetric and
False otherwise. A is skew symmetric iff Transpose (A) =−A.

Examples:

In> A := {{0,-1},{1,0}}

Out> {{0,-1},{1,0}};

In> PrettyForm(%)

/ \

| (0) (-1) |

| |

| (1) (0) |

\ /

Out> True;

In> IsSkewSymmetric(A);

Out> True;

See also: IsSymmetric, IsHermitian

IsUnitary — test for a unitary ma-
trix

(standard library)

Calling format:

IsUnitary(A)

Parameters:

A – a square matrix

55

Description:

This function tries to find out if A is unitary.
A matrix A is orthogonal iff A−1 = Transpose(Conjugate(A)

). This is equivalent to the fact that the columns of A build an
orthonormal system (with respect to the scalar product defined
by InProduct).

Examples:

In> IsUnitary({{0,I},{-I,0}})

Out> True;

In> IsUnitary({{0,I},{2,0}})

Out> False;

See also: IsHermitian, IsSymmetric

IsIdempotent — test for an idempo-
tent matrix

(standard library)

Calling format:

IsIdempotent(A)

Parameters:

A – a square matrix

Description:

IsIdempotent(A) returns True if A is idempotent and False

otherwise. A is idempotent iff A2 = A. Note that this also
implies that A raised to any power is also equal to A.

Examples:

In> IsIdempotent(ZeroMatrix(10,10));

Out> True;

In> IsIdempotent(Identity(20))

Out> True;

56

Chapter 18

Special matrices

JacobianMatrix — calculate the Ja-
cobian matrix of n functions in n
variables

(standard library)

Calling format:

JacobianMatrix(functions,variables)

Parameters:

functions – an n-dimensional vector of functions
variables – an n-dimensional vector of variables

Description:

The function JacobianMatrix calculates the Jacobian matrix of
n functions in n variables.

The (i,j)-th element of the Jacobian matrix is defined as the
derivative of i-th function with respect to the j-th variable.

Examples:

In> JacobianMatrix({Sin(x),Cos(y)}, {x,y});

Out> {{Cos(x),0},{0,-Sin(y)}};

In> PrettyForm(%)

/ \

| (Cos(x)) (0) |

| |

| (0) (-(Sin(y))) |

\ /

VandermondeMatrix — create the
Vandermonde matrix

(standard library)

Calling format:

VandermondeMatrix(vector)

Parameters:

vector – an n-dimensional vector

Description:

The function VandermondeMatrix calculates the Vandermonde
matrix of a vector.

The (i,j)-th element of the Vandermonde matrix is defined as
ij−1.

Examples:

In> VandermondeMatrix({1,2,3,4})

Out> {{1,1,1,1},{1,2,3,4},{1,4,9,16},{1,8,27,64}};

In>PrettyForm(%)

/ \

| (1) (1) (1) (1) |

| |

| (1) (2) (3) (4) |

| |

| (1) (4) (9) (16) |

| |

| (1) (8) (27) (64) |

\ /

HessianMatrix — create the Hessian
matrix

(standard library)

Calling format:

HessianMatrix(function,var)

Parameters:

function – a function in n variables
var – an n-dimensional vector of variables

Description:

The function HessianMatrix calculates the Hessian matrix of a
vector.

If f (x) is a function of an n-dimensional vector x, then the
(i,j)-th element of the Hessian matrix of the function f (x) is

defined as ∂
∂xi

(
d
dxj

f (x)
)

. If the third order mixed partials are

continuous, then the Hessian matrix is symmetric (a standard
theorem of calculus).

The Hessian matrix is used in the second derivative test to
discern if a critical point is a local maximum, a local minimum
or a saddle point.

Examples:

In> HessianMatrix(3*x^2-2*x*y+y^2-8*y, {x,y})

Out> {{6,-2},{-2,2}};

In> PrettyForm(%)

/ \

| (6) (-2) |

| |

| (-2) (2) |

\ /

57

HilbertMatrix — create a Hilbert
matrix

(standard library)

Calling format:

HilbertMatrix(n)

HilbertMatrix(n,m)

Parameters:

n,m – positive integers

Description:

The function HilbertMatrix returns the n by m Hilbert matrix
if given two arguments, and the square n by n Hilbert matrix
if given only one. The Hilbert matrix is defined as A(i,j) =

1/(i+j-1). The Hilbert matrix is extremely sensitive to manip-
ulate and invert numerically.

Examples:

In> PrettyForm(HilbertMatrix(4))

/ \

| (1) / 1 \ / 1 \ / 1 \ |

| | - | | - | | - | |

| \ 2 / \ 3 / \ 4 / |

| |

| / 1 \ / 1 \ / 1 \ / 1 \ |

| | - | | - | | - | | - | |

| \ 2 / \ 3 / \ 4 / \ 5 / |

| |

| / 1 \ / 1 \ / 1 \ / 1 \ |

| | - | | - | | - | | - | |

| \ 3 / \ 4 / \ 5 / \ 6 / |

| |

| / 1 \ / 1 \ / 1 \ / 1 \ |

| | - | | - | | - | | - | |

| \ 4 / \ 5 / \ 6 / \ 7 / |

\ /

See also: HilbertInverseMatrix

HilbertInverseMatrix — create a
Hilbert inverse matrix

(standard library)

Calling format:

HilbertInverseMatrix(n)

Parameters:

n – positive integer

Description:

The function HilbertInverseMatrix returns the n by n inverse
of the corresponding Hilbert matrix. All Hilbert inverse matri-
ces have integer entries that grow in magnitude rapidly.

Examples:

In> PrettyForm(HilbertInverseMatrix(4))

/ \

| (16) (-120) (240) (-140) |

| |

| (-120) (1200) (-2700) (1680) |

| |

| (240) (-2700) (6480) (-4200) |

| |

| (-140) (1680) (-4200) (2800) |

\ /

See also: HilbertMatrix

ToeplitzMatrix — create a Toeplitz
matrix

(standard library)

Calling format:

ToeplitzMatrix(N)

Parameters:

N – an n-dimensional row vector

Description:

The function ToeplitzMatrix calculates the Toeplitz matrix
given an n-dimensional row vector. This matrix has the same
entries in all diagonal columns, from upper left to lower right.

Examples:

In> PrettyForm(ToeplitzMatrix({1,2,3,4,5}))

/ \

| (1) (2) (3) (4) (5) |

| |

| (2) (1) (2) (3) (4) |

| |

| (3) (2) (1) (2) (3) |

| |

| (4) (3) (2) (1) (2) |

| |

| (5) (4) (3) (2) (1) |

\ /

WronskianMatrix — create the Wron-
skian matrix

(standard library)

Calling format:

WronskianMatrix(func,var)

Parameters:

func – an n-dimensional vector of functions
var – a variable to differentiate with respect to

Description:

58

The function WronskianMatrix calculates the Wronskian matrix
of n functions.

The Wronskian matrix is created by putting each function as
the first element of each column, and filling in the rest of each
column by the (i− 1)-th derivative, where i is the current row.

The Wronskian matrix is used to verify that the n functions
are linearly independent, usually solutions to a differential equa-
tion. If the determinant of the Wronskian matrix is zero, then
the functions are dependent, otherwise they are independent.

Examples:

In> WronskianMatrix({Sin(x),Cos(x),x^4},x);

Out> {{Sin(x),Cos(x),x^4},{Cos(x),-Sin(x),4*x^3},

{-Sin(x),-Cos(x),12*x^2}};

In> PrettyForm(%)

/ \

| (Sin(x)) (Cos(x)) / 4 \ |

| \ x / |

| |

| (Cos(x)) (-(Sin(x))) / 3 \ |

| \ 4 * x / |

| |

| (-(Sin(x))) (-(Cos(x))) / 2 \ |

| \ 12 * x / |

\ /

The last element is a linear combination of the first two, so the
determinant is zero:

In> A:=Determinant(WronskianMatrix({x^4,x^3,2*x^4

+ 3*x^3},x))

Out> x^4*3*x^2*(24*x^2+18*x)-x^4*(8*x^3+9*x^2)*6*x

+(2*x^4+3*x^3)*4*x^3*6*x-4*x^6*(24*x^2+18*x)+x^3

*(8*x^3+9*x^2)*12*x^2-(2*x^4+3*x^3)*3*x^2*12*x^2;

In> Simplify(A)

Out> 0;

SylvesterMatrix — calculate the
Sylvester matrix of two polynomials

(standard library)

Calling format:

SylvesterMatrix(poly1,poly2,variable)

Parameters:

poly1 – polynomial

poly2 – polynomial

variable – variable to express the matrix for

Description:

The function SylvesterMatrix calculates the Sylvester matrix
for a pair of polynomials.

The Sylvester matrix is closely related to the resultant, which
is defined as the determinant of the Sylvester matrix. Two poly-
nomials share common roots only if the resultant is zero.

Examples:

In> ex1:= x^2+2*x-a

Out> x^2+2*x-a;

In> ex2:= x^2+a*x-4

Out> x^2+a*x-4;

In> A:=SylvesterMatrix(ex1,ex2,x)

Out> {{1,2,-a,0},{0,1,2,-a},

{1,a,-4,0},{0,1,a,-4}};

In> B:=Determinant(A)

Out> 16-a^2*a- -8*a-4*a+a^2- -2*a^2-16-4*a;

In> Simplify(B)

Out> 3*a^2-a^3;

The above example shows that the two polynomials have com-
mon zeros if a = 3.

See also: Determinant, Simplify, Solve, PSolve

59

Chapter 19

Operations on polynomials

This chapter contains commands to manipulate polynomials.
This includes functions for constructing and evaluating orthog-
onal polynomials.

Expand — transform a polynomial to
an expanded form

(standard library)

Calling format:

Expand(expr)

Expand(expr, var)

Expand(expr, varlist)

Parameters:

expr – a polynomial expression
var – a variable
varlist – a list of variables

Description:

This command brings a polynomial in expanded form, in which
polynomials are represented in the form c0 + c1x+ c2x

2 + ...+
cnx

n. In this form, it is easier to test whether a polynomial is
zero, namely by testing whether all coefficients are zero.

If the polynomial expr contains only one variable, the first
calling sequence can be used. Otherwise, the second form should
be used which explicitly mentions that expr should be consid-
ered as a polynomial in the variable var. The third calling form
can be used for multivariate polynomials. Firstly, the poly-
nomial expr is expanded with respect to the first variable in
varlist. Then the coefficients are all expanded with respect to
the second variable, and so on.

Examples:

In> PrettyPrinter’Set("PrettyForm");

True

In> Expand((1+x)^5);

5 4 3 2

x + 5 * x + 10 * x + 10 * x + 5 * x + 1

In> Expand((1+x-y)^2, x);

2 2

x + 2 * (1 - y) * x + (1 - y)

In> Expand((1+x-y)^2, {x,y});

2 2

x + (-2 * y + 2) * x + y - 2 * y + 1

See also: ExpandBrackets

Degree — degree of a polynomial

(standard library)

Calling format:

Degree(expr)

Degree(expr, var)

Parameters:

expr – a polynomial
var – a variable occurring in expr

Description:

This command returns the degree of the polynomial expr with
respect to the variable var. The degree is the highest power of
var occurring in the polynomial. If only one variable occurs in
expr, the first calling sequence can be used. Otherwise the user
should use the second form in which the variable is explicitly
mentioned.

Examples:

In> Degree(x^5+x-1);

Out> 5;

In> Degree(a+b*x^3, a);

Out> 1;

In> Degree(a+b*x^3, x);

Out> 3;

See also: Expand, Coef

Coef — coefficient of a polynomial

(standard library)

Calling format:

Coef(expr, var, order)

Parameters:

60

expr – a polynomial
var – a variable occurring in expr

order – integer or list of integers

Description:

This command returns the coefficient of var to the power order
in the polynomial expr. The parameter order can also be a list
of integers, in which case this function returns a list of coeffi-
cients.

Examples:

In> e := Expand((a+x)^4,x)

Out> x^4+4*a*x^3+(a^2+(2*a)^2+a^2)*x^2+

(a^2*2*a+2*a^3)*x+a^4;

In> Coef(e,a,2)

Out> 6*x^2;

In> Coef(e,a,0 .. 4)

Out> {x^4,4*x^3,6*x^2,4*x,1};

See also: Expand, Degree, LeadingCoef

Content — content of a univariate
polynomial

(standard library)

Calling format:

Content(expr)

Parameters:

expr – univariate polynomial

Description:

This command determines the content of a univariate polyno-
mial. The content is the greatest common divisor of all the
terms in the polynomial. Every polynomial can be written as
the product of the content with the primitive part.

Examples:

In> poly := 2*x^2 + 4*x;

Out> 2*x^2+4*x;

In> c := Content(poly);

Out> 2*x;

In> pp := PrimitivePart(poly);

Out> x+2;

In> Expand(pp*c);

Out> 2*x^2+4*x;

See also: PrimitivePart, Gcd

PrimitivePart — primitive part of a
univariate polynomial

(standard library)

Calling format:

PrimitivePart(expr)

Parameters:

expr – univariate polynomial

Description:

This command determines the primitive part of a univariate
polynomial. The primitive part is what remains after the con-
tent (the greatest common divisor of all the terms) is divided
out. So the product of the content and the primitive part equals
the original polynomial.

Examples:

In> poly := 2*x^2 + 4*x;

Out> 2*x^2+4*x;

In> c := Content(poly);

Out> 2*x;

In> pp := PrimitivePart(poly);

Out> x+2;

In> Expand(pp*c);

Out> 2*x^2+4*x;

See also: Content

LeadingCoef — leading coefficient of
a polynomial

(standard library)

Calling format:

LeadingCoef(poly)

LeadingCoef(poly, var)

Parameters:

poly – a polynomial

var – a variable

Description:

This function returns the leading coefficient of poly, regarded
as a polynomial in the variable var. The leading coefficient is
the coefficient of the term of highest degree. If only one variable
appears in the expression poly, it is obvious that it should be
regarded as a polynomial in this variable and the first calling
sequence may be used.

Examples:

In> poly := 2*x^2 + 4*x;

Out> 2*x^2+4*x;

In> lc := LeadingCoef(poly);

Out> 2;

In> m := Monic(poly);

Out> x^2+2*x;

In> Expand(lc*m);

Out> 2*x^2+4*x;

In> LeadingCoef(2*a^2 + 3*a*b^2 + 5, a);

Out> 2;

In> LeadingCoef(2*a^2 + 3*a*b^2 + 5, b);

Out> 3*a;

See also: Coef, Monic

61

Monic — monic part of a polynomial

(standard library)

Calling format:

Monic(poly)

Monic(poly, var)

Parameters:

poly – a polynomial
var – a variable

Description:

This function returns the monic part of poly, regarded as a
polynomial in the variable var. The monic part of a polynomial
is the quotient of this polynomial by its leading coefficient. So
the leading coefficient of the monic part is always one. If only
one variable appears in the expression poly, it is obvious that
it should be regarded as a polynomial in this variable and the
first calling sequence may be used.

Examples:

In> poly := 2*x^2 + 4*x;

Out> 2*x^2+4*x;

In> lc := LeadingCoef(poly);

Out> 2;

In> m := Monic(poly);

Out> x^2+2*x;

In> Expand(lc*m);

Out> 2*x^2+4*x;

In> Monic(2*a^2 + 3*a*b^2 + 5, a);

Out> a^2+(a*3*b^2)/2+5/2;

In> Monic(2*a^2 + 3*a*b^2 + 5, b);

Out> b^2+(2*a^2+5)/(3*a);

See also: LeadingCoef

SquareFree — return the square-free
part of polynomial

(standard library)

Calling format:

SquareFree(p)

Parameters:

p - a polynomial in x

Description:

Given a polynomial
p = pn1

1 ...pnm
m

with irreducible polynomials pi, return the square-free version
part (with all the factors having multiplicity 1):

p1...pm

Examples:

In> Expand((x+1)^5)

Out> x^5+5*x^4+10*x^3+10*x^2+5*x+1;

In> SquareFree(%)

Out> (x+1)/5;

In> Monic(%)

Out> x+1;

See also: FindRealRoots, NumRealRoots, MinimumBound,
MaximumBound, Factor

SquareFreeFactorize — return
square-free decomposition of poly-
nomial

(standard library)

Calling format:

SquareFreeFactorize(p,x)

Parameters:

p - a polynomial in x

Description:

Given a polynomial p having square-free decomposition

p = pn1
1 ...pnm

m

where pi are square-free and ni+1 > ni, return the list of pairs
(pi, ni)

Examples:

In> Expand((x+1)^5)

Out> x^5+5*x^4+10*x^3+10*x^2+5*x+1

In> SquareFreeFactorize(%,x)

Out> {{x+1,5}}

See also: Factor

Div and Mod for polynomials

(standard library)

Div and Mod are also defined for polynomials.

See also: Div, Mod

Horner — convert a polynomial into
the Horner form

(standard library)

Calling format:

Horner(expr, var)

Parameters:

expr – a polynomial in var

var – a variable

Description:

62

This command turns the polynomial expr, considered as a uni-
variate polynomial in var, into Horner form. A polynomial in
normal form is an expression such as

c0 + c1x+ ...+ cnx
n.

If one converts this polynomial into Horner form, one gets the
equivalent expression

(... (cnx+ cn−1)x+ ...+ c1)x+ c0.

Both expression are equal, but the latter form gives a more
efficient way to evaluate the polynomial as the powers have dis-
appeared.

Examples:

In> expr1:=Expand((1+x)^4)

Out> x^4+4*x^3+6*x^2+4*x+1;

In> Horner(expr1,x)

Out> (((x+4)*x+6)*x+4)*x+1;

See also: Expand, ExpandBrackets, EvaluateHornerScheme

ExpandBrackets — expand all brack-
ets

(standard library)

Calling format:

ExpandBrackets(expr)

Parameters:

expr – an expression

Description:

This command tries to expand all the brackets by repeatedly
using the distributive laws a (b+ c) = ab + ac and (a+ b) c =
ac + bc. It goes further than Expand, in that it expands all
brackets.

Examples:

In> Expand((a-x)*(b-x),x)

Out> x^2-(b+a)*x+a*b;

In> Expand((a-x)*(b-x),{x,a,b})

Out> x^2-(b+a)*x+b*a;

In> ExpandBrackets((a-x)*(b-x))

Out> a*b-x*b+x^2-a*x;

See also: Expand

EvaluateHornerScheme — fast evalua-
tion of polynomials

(standard library)

Calling format:

EvaluateHornerScheme(coeffs,x)

Parameters:

coeffs – a list of coefficients
x – expression

Description:

This function evaluates a polynomial given as a list of its coef-
ficients, using the Horner scheme. The list of coefficients starts
with the 0-th power.

Example:

In> EvaluateHornerScheme({a,b,c,d},x)

Out> a+x*(b+x*(c+x*d));

See also: Horner

63

Chapter 20

Special polynomials

OrthoP — Legendre and Jacobi or-
thogonal polynomials

(standard library)

Calling format:

OrthoP(n, x);

OrthoP(n, a, b, x);

Parameters:

n – degree of polynomial
x – point to evaluate polynomial at
a, b – parameters for Jacobi polynomial

Description:

The first calling format with two arguments evaluates the Leg-
endre polynomial of degree n at the point x. The second form
does the same for the Jacobi polynomial with parameters a and
b, which should be both greater than -1.

The Jacobi polynomials are orthogonal with respect to the
weight function (1− x)a (1 + x)b on the interval [-1,1]. They
satisfy the recurrence relation

P (n, a, b, x) =
2n+ a+ b− 1

2n+ a+ b− 2
∗

a2 − b2 + x (2n+ a+ b− 2) (n+ a+ b)

2n (n+ a+ b)
P (n− 1, a, b, x)

− (n+ a− 1) (n+ b− 1) (2n+ a+ b)

n (n+ a+ b) (2n+ a+ b− 2)
P (n− 2, a, b, x)

for n > 1, with P (0, a, b, x) = 1,

P (1, a, b, x) =
a− b

2
+ x

(
1 +

a+ b

2

)
.

Legendre polynomials are a special case of Jacobi polyno-
mials with the specific parameter values a = b = 0. So they
form an orthogonal system with respect to the weight function
identically equal to 1 on the interval [-1,1], and they satisfy the
recurrence relation

P (n, x) = (2n− 1)
x

2n
P (n− 1, x)− n− 1

n
P (n− 2, x)

for n > 1, with P (0, x) = 1, P (1, x) = x.
Most of the work is performed by the internal function

OrthoPoly.

Examples:

In> PrettyPrinter’Set("PrettyForm");

True

In> OrthoP(3, x);

/ 2 \

| 5 * x 3 |

x * | ------ - - |

\ 2 2 /

In> OrthoP(3, 1, 2, x);

1 / / 21 * x 7 \ 7 \

- + x * | x * | ------ - - | - - |

2 \ \ 2 2 / 2 /

In> Expand(%)

3 2

21 * x - 7 * x - 7 * x + 1

2

In> OrthoP(3, 1, 2, 0.5);

-0.8124999999

See also: OrthoPSum, OrthoG, OrthoPoly

OrthoH — Hermite orthogonal poly-
nomials

(standard library)

Calling format:

OrthoH(n, x);

Parameters:

n – degree of polynomial

x – point to evaluate polynomial at

Description:

This function evaluates the Hermite polynomial of degree n at
the point x.

64

The Hermite polynomials are orthogonal with respect to the

weight function exp
(
−x

2

2

)
on the entire real axis. They satisfy

the recurrence relation

H (n, x) = 2xH (n− 1, x)− 2 (n− 1)H (n− 2, x)

for n > 1, with H (0, x) = 1, H (1, x) = 2x.
Most of the work is performed by the internal function

OrthoPoly.

Examples:

In> OrthoH(3, x);

Out> x*(8*x^2-12);

In> OrthoH(6, 0.5);

Out> 31;

See also: OrthoHSum, OrthoPoly

OrthoG — Gegenbauer orthogonal
polynomials

(standard library)

Calling format:

OrthoG(n, a, x);

Parameters:

n – degree of polynomial
a – parameter
x – point to evaluate polynomial at

Description:

This function evaluates the Gegenbauer (or ultraspherical) poly-
nomial with parameter a and degree n at the point x. The
parameter a should be greater than -1/2.

The Gegenbauer polynomials are orthogonal with respect to

the weight function
(
1− x2

)a− 1
2 on the interval [-1,1]. Hence

they are connected to the Jacobi polynomials via

G (n, a, x) = P
(
n, a− 1

2
, a− 1

2
, x
)
.

They satisfy the recurrence relation

G (n, a, x) = 2
(

1 +
a− 1

n

)
xG (n− 1, a, x)

−
(

1 + 2
a− 2

n

)
G (n− 2, a, x)

for n > 1, with G (0, a, x) = 1, G (1, a, x) = 2x.
Most of the work is performed by the internal function

OrthoPoly.

Examples:

In> OrthoG(5, 1, x);

Out> x*((32*x^2-32)*x^2+6);

In> OrthoG(5, 2, -0.5);

Out> 2;

See also: OrthoP, OrthoT, OrthoU, OrthoGSum, OrthoPoly

OrthoL — Laguerre orthogonal poly-
nomials

(standard library)

Calling format:

OrthoL(n, a, x);

Parameters:

n – degree of polynomial
a – parameter
x – point to evaluate polynomial at

Description:

This function evaluates the Laguerre polynomial with parameter
a and degree n at the point x. The parameter a should be greater
than -1.

The Laguerre polynomials are orthogonal with respect to the
weight function xa exp (−x) on the positive real axis. They sat-
isfy the recurrence relation

L (n, a, x) =
(

2 +
a− 1− x

n

)
L (n− 1, a, x)

−
(

1− a− 1

n

)
L (n− 2, a, x)

for n > 1, with L (0, a, x) = 1, L (1, a, x) = a+ 1− x.
Most of the work is performed by the internal function

OrthoPoly.

Examples:

In> OrthoL(3, 1, x);

Out> x*(x*(2-x/6)-6)+4;

In> OrthoL(3, 1/2, 0.25);

Out> 1.2005208334;

See also: OrthoLSum, OrthoPoly

OrthoT — Chebyshev polynomials

OrthoU — Chebyshev polynomials

(standard library)

Calling format:

OrthoT(n, x);

OrthoU(n, x);

Parameters:

n – degree of polynomial
x – point to evaluate polynomial at

Description:

These functions evaluate the Chebyshev polynomials of the first
kind T (n, x) and of the second kind U (n, x), of degree n at
the point x. (The name of this Russian mathematician is also
sometimes spelled Tschebyscheff.)

The Chebyshev polynomials are orthogonal with respect to

the weight function
(
1− x2

)− 1
2 . Hence they are a special case

65

of the Gegenbauer polynomials G (n, a, x), with a = 0. They
satisfy the recurrence relations

T (n, x) = 2xT (n− 1, x)− T (n− 2, x) ,

U (n, x) = 2xU (n− 1, x)− U (n− 2, x)

for n > 1, with T (0, x) = 1, T (1, x) = x, U (0, x) = 1, U (1, x) =
2x.

Examples:

In> OrthoT(3, x);

Out> 2*x*(2*x^2-1)-x;

In> OrthoT(10, 0.9);

Out> -0.2007474688;

In> OrthoU(3, x);

Out> 4*x*(2*x^2-1);

In> OrthoU(10, 0.9);

Out> -2.2234571776;

See also: OrthoG, OrthoTSum, OrthoUSum, OrthoPoly

OrthoPSum — sums of series of or-
thogonal polynomials

OrthoHSum — sums of series of or-
thogonal polynomials

OrthoLSum — sums of series of or-
thogonal polynomials

OrthoGSum — sums of series of or-
thogonal polynomials

OrthoTSum — sums of series of or-
thogonal polynomials

OrthoUSum — sums of series of or-
thogonal polynomials

(standard library)

Calling format:

OrthoPSum(c, x);

OrthoPSum(c, a, b, x);

OrthoHSum(c, x);

OrthoLSum(c, a, x);

OrthoGSum(c, a, x);

OrthoTSum(c, x);

OrthoUSum(c, x);

Parameters:

c – list of coefficients
a, b – parameters of specific polynomials
x – point to evaluate polynomial at

Description:

These functions evaluate the sum of series of orthogonal poly-
nomials at the point x, with given list of coefficients c of the
series and fixed polynomial parameters a, b (if applicable).

The list of coefficients starts with the lowest order, so that for
example OrthoLSum(c, a, x) = c[1] L[0](a,x) + c[2] L[1](a,x) +
... + c[N] L[N-1](a,x).

See pages for specific orthogonal polynomials for more details
on the parameters of the polynomials.

Most of the work is performed by the internal function
OrthoPolySum. The individual polynomials entering the series
are not computed, only the sum of the series.

Examples:

In> Expand(OrthoPSum({1,0,0,1/7,1/8}, 3/2, \

2/3, x));

Out> (7068985*x^4)/3981312+(1648577*x^3)/995328+

(-3502049*x^2)/4644864+(-4372969*x)/6967296

+28292143/27869184;

See also: OrthoP, OrthoG, OrthoH, OrthoL, OrthoT, OrthoU,
OrthoPolySum

OrthoPoly — internal function for
constructing orthogonal polynomials

(standard library)

Calling format:

OrthoPoly(name, n, par, x)

Parameters:

name – string containing name of orthogonal family
n – degree of the polynomial
par – list of values for the parameters
x – point to evaluate at

Description:

This function is used internally to construct orthogonal polyno-
mials. It returns the n-th polynomial from the family name with
parameters par at the point x.

All known families are stored in the association list re-
turned by the function KnownOrthoPoly(). The name serves as
key. At the moment the following names are known to Yacas:
"Jacobi", "Gegenbauer", "Laguerre", "Hermite", "Tscheb1",
and "Tscheb2". The value associated to the key is a pure func-
tion that takes two arguments: the order n and the extra param-
eters p, and returns a list of two lists: the first list contains the
coefficients A,B of the n=1 polynomial, i.e. A+Bx; the second
list contains the coefficients A,B,C in the recurrence relation, i.e.
Pn = (A+Bx)Pn−1 + CPn−2. (There are only 3 coefficients
in the second list, because none of the polynomials use C +Dx
instead of C in the recurrence relation. This is assumed in the
implementation!)

If the argument x is numerical, the function
OrthoPolyNumeric is called. Otherwise, the function
OrthoPolyCoeffs computes a list of coefficients, and
EvaluateHornerScheme converts this list into a polynomial
expression.

See also: OrthoP, OrthoG, OrthoH, OrthoL, OrthoT, OrthoU,
OrthoPolySum

66

OrthoPolySum — internal function for
computing series of orthogonal poly-
nomials

(standard library)

Calling format:

OrthoPolySum(name, c, par, x)

Parameters:

name – string containing name of orthogonal family
c – list of coefficients
par – list of values for the parameters
x – point to evaluate at

Description:

This function is used internally to compute series of orthogonal
polynomials. It is similar to the function OrthoPoly and returns
the result of the summation of series of polynomials from the
family name with parameters par at the point x, where c is the
list of coefficients of the series.

The algorithm used to compute the series without first com-
puting the individual polynomials is the Clenshaw-Smith recur-
rence scheme. (See the algorithms book for explanations.)

If the argument x is numerical, the function
OrthoPolySumNumeric is called. Otherwise, the function
OrthoPolySumCoeffs computes the list of coefficients of the
resulting polynomial, and EvaluateHornerScheme converts this
list into a polynomial expression.

See also: OrthoPSum, OrthoGSum, OrthoHSum, OrthoLSum,
OrthoTSum, OrthoUSum, OrthoPoly

67

Chapter 21

List operations

Most objects that can be of variable size are represented
as lists (linked lists internally). Yacas does implement arrays,
which are faster when the number of elements in a collection of
objects doesn’t change. Operations on lists have better support
in the current system.

Head — the first element of a list

(Yacas internal)

Calling format:

Head(list)

Parameters:

list – a list

Description:

This function returns the first element of a list. If it is applied
to a general expression, it returns the first operand. An error is
returned if “list” is an atom.

Examples:

In> Head({a,b,c})

Out> a;

In> Head(f(a,b,c));

Out> a;

See also: Tail, Length

Tail — returns a list without its first
element

(Yacas internal)

Calling format:

Tail(list)

Parameters:

list – a list

Description:

This function returns “list” without its first element.

Examples:

In> Tail({a,b,c})

Out> {b,c};

See also: Head, Length

Length — the length of a list or string

(Yacas internal)

Calling format:

Length(object)

Parameters:

object – a list, array or string

Description:

Length returns the length of a list. This function also works on
strings and arrays.

Examples:

In> Length({a,b,c})

Out> 3;

In> Length("abcdef");

Out> 6;

See also: Head, Tail, Nth, Count

Map — apply an n-ary function to all
entries in a list

(standard library)

Calling format:

Map(fn, list)

Parameters:

fn – function to apply
list – list of lists of arguments

Description:

This function applies “fn” to every list of arguments to be found
in “list”. So the first entry of “list” should be a list containing
the first, second, third, ... argument to “fn”, and the same goes
for the other entries of “list”. The function can either be given
as a string or as a pure function (see Apply for more information
on pure functions).

Examples:

In> MapSingle("Sin",{a,b,c});

Out> {Sin(a),Sin(b),Sin(c)};

In> Map("+",{{a,b},{c,d}});

Out> {a+c,b+d};

See also: MapSingle, MapArgs, Apply

68

MapSingle — apply a unary function
to all entries in a list

(standard library)

Calling format:

MapSingle(fn, list)

Parameters:

fn – function to apply

list – list of arguments

Description:

The function “fn” is successively applied to all entries in “list”,
and a list containing the respective results is returned. The
function can be given either as a string or as a pure function
(see Apply for more information on pure functions).

The /@ operator provides a shorthand for MapSingle.

Examples:

In> MapSingle("Sin",{a,b,c});

Out> {Sin(a),Sin(b),Sin(c)};

In> MapSingle({{x},x^2}, {a,2,c});

Out> {a^2,4,c^2};

See also: Map, MapArgs, /@, Apply

MakeVector — vector of uniquely
numbered variable names

(standard library)

Calling format:

MakeVector(var,n)

Parameters:

var – free variable

n – length of the vector

Description:

A list of length “n” is generated. The first entry contains the
identifier “var” with the number 1 appended to it, the second
entry contains “var” with the suffix 2, and so on until the last
entry which contains “var” with the number “n” appended to
it.

Examples:

In> MakeVector(a,3)

Out> {a1,a2,a3};

See also: RandomIntegerVector, ZeroVector

Select — select entries satisfying
some predicate

(standard library)

Calling format:

Select(pred, list)

Parameters:

pred – a predicate
list – a list of elements to select from

Description:

Select returns a sublist of ”list” which contains all the entries
for which the predicate “pred” returns True when applied to
this entry.

Examples:

In> Select("IsInteger",{a,b,2,c,3,d,4,e,f})

Out> {2,3,4};

See also: Length, Find, Count

Nth — return the n-th element of a
list

(Yacas internal)

Calling format:

Nth(list, n)

Parameters:

list – list to choose from
n – index of entry to pick

Description:

The entry with index “n” from “list” is returned. The first entry
has index 1. It is possible to pick several entries of the list by
taking “n” to be a list of indices.

More generally, Nth returns the n-th operand of the expression
passed as first argument.

An alternative but equivalent form of Nth(list, n) is
list[n].

Examples:

In> lst := {a,b,c,13,19};

Out> {a,b,c,13,19};

In> Nth(lst, 3);

Out> c;

In> lst[3];

Out> c;

In> Nth(lst, {3,4,1});

Out> {c,13,a};

In> Nth(b*(a+c), 2);

Out> a+c;

See also: Select, Nth

69

DestructiveReverse — reverse a list
destructively

(Yacas internal)

Calling format:

DestructiveReverse(list)

Parameters:

list – list to reverse

Description:

This command reverses “list” in place, so that the original is
destroyed. This means that any variable bound to “list” will
now have an undefined content, and should not be used any
more. The reversed list is returned.

Destructive commands are faster than their nondestructive
counterparts. Reverse is the non-destructive version of this
function.

Examples:

In> lst := {a,b,c,13,19};

Out> {a,b,c,13,19};

In> revlst := DestructiveReverse(lst);

Out> {19,13,c,b,a};

In> lst;

Out> {a};

See also: FlatCopy, Reverse

Reverse — return the reversed list
(without touching the original)

(standard library)

Calling format:

Reverse(list)

Parameters:

list – list to reverse

Description:

This function returns a list reversed, without changing the orig-
inal list. It is similar to DestructiveReverse, but safer and
slower.

Example:

In> lst:={a,b,c,13,19}

Out> {a,b,c,13,19};

In> revlst:=Reverse(lst)

Out> {19,13,c,b,a};

In> lst

Out> {a,b,c,13,19};

See also: FlatCopy, DestructiveReverse

List — construct a list

(Yacas internal)

Calling format:

List(expr1, expr2, ...)

Parameters:

expr1, expr2 – expressions making up the list

Description:

A list is constructed whose first entry is “expr1”, the second
entry is “expr2”, and so on. This command is equivalent to the
expression “expr1, expr2, ...”.

Examples:

In> List();

Out> {};

In> List(a,b);

Out> {a,b};

In> List(a,{1,2},d);

Out> {a,{1,2},d};

See also: UnList, Listify

UnList — convert a list to a function
application

(Yacas internal)

Calling format:

UnList(list)

Parameters:

list – list to be converted

Description:

This command converts a list to a function application. The first
entry of “list” is treated as a function atom, and the following
entries are the arguments to this function. So the function re-
ferred to in the first element of “list” is applied to the other
elements.

Note that “list” is evaluated before the function application
is formed, but the resulting expression is left unevaluated. The
functions UnList() and Hold() both stop the process of evalu-
ation.

Examples:

In> UnList({Cos, x});

Out> Cos(x);

In> UnList({f});

Out> f();

In> UnList({Taylor,x,0,5,Cos(x)});

Out> Taylor(x,0,5)Cos(x);

In> Eval(%);

Out> 1-x^2/2+x^4/24;

See also: List, Listify, Hold

70

Listify — convert a function appli-
cation to a list

(Yacas internal)

Calling format:

Listify(expr)

Parameters:

expr – expression to be converted

Description:

The parameter “expr” is expected to be a compound object,
i.e. not an atom. It is evaluated and then converted to a list.
The first entry in the list is the top-level operator in the evalu-
ated expression and the other entries are the arguments to this
operator. Finally, the list is returned.

Examples:

In> Listify(Cos(x));

Out> {Cos,x};

In> Listify(3*a);

Out> {*,3,a};

See also: List, UnList, IsAtom

Concat — concatenate lists

(Yacas internal)

Calling format:

Concat(list1, list2, ...)

Parameters:

list1, list2, ... – lists to concatenate

Description:

The lists “list1”, “list2”, ... are evaluated and concatenated.
The resulting big list is returned.

Examples:

In> Concat({a,b}, {c,d});

Out> {a,b,c,d};

In> Concat({5}, {a,b,c}, {{f(x)}});

Out> {5,a,b,c,{f(x)}};

See also: ConcatStrings, :, Insert

Delete — delete an element from a
list

(Yacas internal)

Calling format:

Delete(list, n)

Parameters:

list – list from which an element should be removed
n – index of the element to remove

Description:

This command deletes the n-th element from “list”. The first
parameter should be a list, while “n” should be a positive integer
less than or equal to the length of “list”. The entry with index
“n” is removed (the first entry has index 1), and the resulting
list is returned.

Examples:

In> Delete({a,b,c,d,e,f}, 4);

Out> {a,b,c,e,f};

See also: DestructiveDelete, Insert, Replace

Insert — insert an element into a
list

(Yacas internal)

Calling format:

Insert(list, n, expr)

Parameters:

list – list in which ”expr” should be inserted
n – index at which to insert
expr – expression to insert in ”list”

Description:

The expression “expr” is inserted just before the n-th entry in
“list”. The first parameter “list” should be a list, while “n”
should be a positive integer less than or equal to the length
of “list” plus one. The expression “expr” is placed between
the entries in “list” with entries “n-1” and “n”. There are two
border line cases: if “n” is 1, the expression “expr” is placed in
front of the list (just as by the : operator); if ”n” equals the
length of “list” plus one, the expression “expr” is placed at the
end of the list (just as by Append). In any case, the resulting
list is returned.

Examples:

In> Insert({a,b,c,d}, 4, x);

Out> {a,b,c,x,d};

In> Insert({a,b,c,d}, 5, x);

Out> {a,b,c,d,x};

In> Insert({a,b,c,d}, 1, x);

Out> {x,a,b,c,d};

See also: DestructiveInsert, :, Append, Delete, Remove

DestructiveDelete — delete an ele-
ment destructively from a list

(Yacas internal)

Calling format:

DestructiveDelete(list, n)

71

Parameters:

list – list from which an element should be removed
n – index of the element to remove

Description:

This is the destructive counterpart of Delete. This command
yields the same result as the corresponding call to Delete, but
the original list is modified. So if a variable is bound to “list”,
it will now be bound to the list with the n-th entry removed.

Destructive commands run faster than their nondestructive
counterparts because the latter copy the list before they alter
it.

Examples:

In> lst := {a,b,c,d,e,f};

Out> {a,b,c,d,e,f};

In> Delete(lst, 4);

Out> {a,b,c,e,f};

In> lst;

Out> {a,b,c,d,e,f};

In> DestructiveDelete(lst, 4);

Out> {a,b,c,e,f};

In> lst;

Out> {a,b,c,e,f};

See also: Delete, DestructiveInsert, DestructiveReplace

DestructiveInsert — insert an ele-
ment destructively into a list

(Yacas internal)

Calling format:

DestructiveInsert(list, n, expr)

Parameters:

list – list in which ”expr” should be inserted
n – index at which to insert
expr – expression to insert in ”list”

Description:

This is the destructive counterpart of Insert. This command
yields the same result as the corresponding call to Insert, but
the original list is modified. So if a variable is bound to “list”,
it will now be bound to the list with the expression “expr”
inserted.

Destructive commands run faster than their nondestructive
counterparts because the latter copy the list before they alter
it.

Examples:

In> lst := {a,b,c,d};

Out> {a,b,c,d};

In> Insert(lst, 2, x);

Out> {a,x,b,c,d};

In> lst;

Out> {a,b,c,d};

In> DestructiveInsert(lst, 2, x);

Out> {a,x,b,c,d};

In> lst;

Out> {a,x,b,c,d};

See also: Insert, DestructiveDelete, DestructiveReplace

Replace — replace an entry in a list

(Yacas internal)

Calling format:

Replace(list, n, expr)

Parameters:

list – list of which an entry should be replaced
n – index of entry to replace
expr – expression to replace the n-th entry with

Description:

The n-th entry of “list” is replaced by the expression “expr”.
This is equivalent to calling Delete and Insert in sequence.
To be precise, the expression Replace(list, n, expr) has the
same result as the expression Insert(Delete(list, n), n,

expr).

Examples:

In> Replace({a,b,c,d,e,f}, 4, x);

Out> {a,b,c,x,e,f};

See also: Delete, Insert, DestructiveReplace

DestructiveReplace — replace an en-
try destructively in a list

(Yacas internal)

Calling format:

DestructiveReplace(list, n, expr)

Parameters:

list – list of which an entry should be replaced
n – index of entry to replace
expr – expression to replace the n-th entry with

Description:

This is the destructive counterpart of Replace. This command
yields the same result as the corresponding call to Replace, but
the original list is modified. So if a variable is bound to “list”,
it will now be bound to the list with the expression “expr”
inserted.

Destructive commands run faster than their nondestructive
counterparts because the latter copy the list before they alter
it.

Examples:

In> lst := {a,b,c,d,e,f};

Out> {a,b,c,d,e,f};

In> Replace(lst, 4, x);

Out> {a,b,c,x,e,f};

In> lst;

Out> {a,b,c,d,e,f};

In> DestructiveReplace(lst, 4, x);

Out> {a,b,c,x,e,f};

In> lst;

Out> {a,b,c,x,e,f};

See also: Replace, DestructiveDelete, DestructiveInsert

72

FlatCopy — copy the top level of a
list

(Yacas internal)

Calling format:

FlatCopy(list)

Parameters:

list – list to be copied

Description:

A copy of “list” is made and returned. The list is not recursed
into, only the first level is copied. This is useful in combination
with the destructive commands that actually modify lists in
place (for efficiency).

Examples:

The following shows a possible way to define a command that
reverses a list nondestructively.

In> reverse(l_IsList) <-- DestructiveReverse \

(FlatCopy(l));

Out> True;

In> lst := {a,b,c,d,e};

Out> {a,b,c,d,e};

In> reverse(lst);

Out> {e,d,c,b,a};

In> lst;

Out> {a,b,c,d,e};

Contains — test whether a list con-
tains a certain element

(standard library)

Calling format:

Contains(list, expr)

Parameters:

list – list to examine
expr – expression to look for in ”list”

Description:

This command tests whether “list” contains the expression
“expr” as an entry. It returns True if it does and False other-
wise. Only the top level of ”list” is examined. The parameter
“list” may also be a general expression, in that case the top-level
operands are tested for the occurrence of “expr”.

Examples:

In> Contains({a,b,c,d}, b);

Out> True;

In> Contains({a,b,c,d}, x);

Out> False;

In> Contains({a,{1,2,3},z}, 1);

Out> False;

In> Contains(a*b, b);

Out> True;

See also: Find, Count

Find — get the index at which a cer-
tain element occurs

(standard library)

Calling format:

Find(list, expr)

Parameters:

list – the list to examine

expr – expression to look for in ”list”

Description:

This commands returns the index at which the expression
“expr” occurs in “list”. If “expr” occurs more than once, the
lowest index is returned. If “expr” does not occur at all, -1 is
returned.

Examples:

In> Find({a,b,c,d,e,f}, d);

Out> 4;

In> Find({1,2,3,2,1}, 2);

Out> 2;

In> Find({1,2,3,2,1}, 4);

Out> -1;

See also: Contains

Append — append an entry at the end
of a list

(standard library)

Calling format:

Append(list, expr)

Parameters:

list – list to append ”expr” to

expr – expression to append to the list

Description:

The expression “expr” is appended at the end of “list” and the
resulting list is returned.

Note that due to the underlying data structure, the time it
takes to append an entry at the end of a list grows linearly with
the length of the list, while the time for prepending an entry at
the beginning is constant.

Examples:

In> Append({a,b,c,d}, 1);

Out> {a,b,c,d,1};

See also: Concat, :, DestructiveAppend

73

DestructiveAppend — destructively
append an entry to a list

(Yacas internal)

Calling format:

DestructiveAppend(list, expr)

Parameters:

list – list to append ”expr” to
expr – expression to append to the list

Description:

This is the destructive counterpart of Append. This command
yields the same result as the corresponding call to Append, but
the original list is modified. So if a variable is bound to “list”,
it will now be bound to the list with the expression “expr”
inserted.

Destructive commands run faster than their nondestructive
counterparts because the latter copy the list before they alter
it.

Examples:

In> lst := {a,b,c,d};

Out> {a,b,c,d};

In> Append(lst, 1);

Out> {a,b,c,d,1};

In> lst

Out> {a,b,c,d};

In> DestructiveAppend(lst, 1);

Out> {a,b,c,d,1};

In> lst;

Out> {a,b,c,d,1};

See also: Concat, :, Append

RemoveDuplicates — remove any du-
plicates from a list

(standard library)

Calling format:

RemoveDuplicates(list)

Parameters:

list – list to act on

Description:

This command removes all duplicate elements from a given list
and returns the resulting list. To be precise, the second oc-
currence of any entry is deleted, as are the third, the fourth,
etc.

Examples:

In> RemoveDuplicates({1,2,3,2,1});

Out> {1,2,3};

In> RemoveDuplicates({a,1,b,1,c,1});

Out> {a,1,b,c};

Push — add an element on top of a
stack

(standard library)

Calling format:

Push(stack, expr)

Parameters:

stack – a list (which serves as the stack container)
expr – expression to push on ”stack”

Description:

This is part of a simple implementation of a stack, internally rep-
resented as a list. This command pushes the expression “expr”
on top of the stack, and returns the stack afterwards.

Examples:

In> stack := {};

Out> {};

In> Push(stack, x);

Out> {x};

In> Push(stack, x2);

Out> {x2,x};

In> PopFront(stack);

Out> x2;

See also: Pop, PopFront, PopBack

Pop — remove an element from a
stack

(standard library)

Calling format:

Pop(stack, n)

Parameters:

stack – a list (which serves as the stack container)
n – index of the element to remove

Description:

This is part of a simple implementation of a stack, internally
represented as a list. This command removes the element with
index “n” from the stack and returns this element. The top of
the stack is represented by the index 1. Invalid indices, for ex-
ample indices greater than the number of element on the stack,
lead to an error.

Examples:

In> stack := {};

Out> {};

In> Push(stack, x);

Out> {x};

In> Push(stack, x2);

Out> {x2,x};

In> Push(stack, x3);

Out> {x3,x2,x};

In> Pop(stack, 2);

Out> x2;

In> stack;

Out> {x3,x};

See also: Push, PopFront, PopBack

74

PopFront — remove an element from
the top of a stack

(standard library)

Calling format:

PopFront(stack)

Parameters:

stack – a list (which serves as the stack container)

Description:

This is part of a simple implementation of a stack, internally
represented as a list. This command removes the element on
the top of the stack and returns it. This is the last element that
is pushed onto the stack.

Examples:

In> stack := {};

Out> {};

In> Push(stack, x);

Out> {x};

In> Push(stack, x2);

Out> {x2,x};

In> Push(stack, x3);

Out> {x3,x2,x};

In> PopFront(stack);

Out> x3;

In> stack;

Out> {x2,x};

See also: Push, Pop, PopBack

PopBack — remove an element from
the bottom of a stack

(standard library)

Calling format:

PopBack(stack)

Parameters:

stack – a list (which serves as the stack container)

Description:

This is part of a simple implementation of a stack, internally
represented as a list. This command removes the element at
the bottom of the stack and returns this element. Of course,
the stack should not be empty.

Examples:

In> stack := {};

Out> {};

In> Push(stack, x);

Out> {x};

In> Push(stack, x2);

Out> {x2,x};

In> Push(stack, x3);

Out> {x3,x2,x};

In> PopBack(stack);

Out> x;

In> stack;

Out> {x3,x2};

See also: Push, Pop, PopFront

Swap — swap two elements in a list

(standard library)

Calling format:

Swap(list, i1, i2)

Parameters:

list – the list in which a pair of entries should be swapped

i1, i2 – indices of the entries in ”list” to swap

Description:

This command swaps the pair of entries with entries “i1” and
“i2” in “list”. So the element at index “i1” ends up at index “i2”
and the entry at “i2” is put at index “i1”. Both indices should
be valid to address elements in the list. Then the updated list
is returned.

Swap() works also on generic arrays.

Examples:

In> lst := {a,b,c,d,e,f};

Out> {a,b,c,d,e,f};

In> Swap(lst, 2, 4);

Out> {a,d,c,b,e,f};

See also: Replace, DestructiveReplace, Array’Create

Count — count the number of occur-
rences of an expression

(standard library)

Calling format:

Count(list, expr)

Parameters:

list – the list to examine

expr – expression to look for in ”list”

Description:

This command counts the number of times that the expression
“expr” occurs in “list” and returns this number.

Examples:

In> lst := {a,b,c,b,a};

Out> {a,b,c,b,a};

In> Count(lst, a);

Out> 2;

In> Count(lst, c);

Out> 1;

In> Count(lst, x);

Out> 0;

See also: Length, Select, Contains

75

Intersection — return the intersec-
tion of two lists

(standard library)

Calling format:

Intersection(l1, l2)

Parameters:

l1, l2 – two lists

Description:

The intersection of the lists “l1” and “l2” is determined and
returned. The intersection contains all elements that occur in
both lists. The entries in the result are listed in the same order
as in “l1”. If an expression occurs multiple times in both “l1”
and “l2”, then it will occur the same number of times in the
result.

Examples:

In> Intersection({a,b,c}, {b,c,d});

Out> {b,c};

In> Intersection({a,e,i,o,u}, {f,o,u,r,t,e,e,n});

Out> {e,o,u};

In> Intersection({1,2,2,3,3,3}, {1,1,2,2,3,3});

Out> {1,2,2,3,3};

See also: Union, Difference

Union — return the union of two lists

(standard library)

Calling format:

Union(l1, l2)

Parameters:

l1, l2 – two lists

Description:

The union of the lists “l1” and “l2” is determined and returned.
The union contains all elements that occur in one or both of the
lists. In the resulting list, any element will occur only once.

Examples:

In> Union({a,b,c}, {b,c,d});

Out> {a,b,c,d};

In> Union({a,e,i,o,u}, {f,o,u,r,t,e,e,n});

Out> {a,e,i,o,u,f,r,t,n};

In> Union({1,2,2,3,3,3}, {2,2,3,3,4,4});

Out> {1,2,3,4};

See also: Intersection, Difference

Difference — return the difference
of two lists

(standard library)

Calling format:

Difference(l1, l2)

Parameters:

l1, l2 – two lists

Description:

The difference of the lists “l1” and “l2” is determined and re-
turned. The difference contains all elements that occur in “l1”
but not in “l2”. The order of elements in “l1” is preserved. If
a certain expression occurs “n1” times in the first list and “n2”
times in the second list, it will occur “n1-n2” times in the result
if “n1” is greater than “n2” and not at all otherwise.

Examples:

In> Difference({a,b,c}, {b,c,d});

Out> {a};

In> Difference({a,e,i,o,u}, {f,o,u,r,t,e,e,n});

Out> {a,i};

In> Difference({1,2,2,3,3,3}, {2,2,3,4,4});

Out> {1,3,3};

See also: Intersection, Union

FillList — fill a list with a certain
expression

(standard library)

Calling format:

FillList(expr, n)

Parameters:

expr – expression to fill the list with

n – the length of the list to construct

Description:

This command creates a list of length “n” in which all slots
contain the expression “expr” and returns this list.

Examples:

In> FillList(x, 5);

Out> {x,x,x,x,x};

See also: MakeVector, ZeroVector, RandomIntegerVector

76

Drop — drop a range of elements
from a list

(standard library)

Calling format:

Drop(list, n)

Drop(list, -n)

Drop(list, {m,n})

Parameters:

list – list to act on
n, m – positive integers describing the entries to drop

Description:

This command removes a sublist of “list” and returns a list con-
taining the remaining entries. The first calling sequence drops
the first “n” entries in “list”. The second form drops the last
“n” entries. The last invocation drops the elements with indices
“m” through “n”.

Examples:

In> lst := {a,b,c,d,e,f,g};

Out> {a,b,c,d,e,f,g};

In> Drop(lst, 2);

Out> {c,d,e,f,g};

In> Drop(lst, -3);

Out> {a,b,c,d};

In> Drop(lst, {2,4});

Out> {a,e,f,g};

See also: Take, Select, Remove

Take — take a sublist from a list,
dropping the rest

(standard library)

Calling format:

Take(list, n)

Take(list, -n)

Take(list, {m,n})

Parameters:

list – list to act on
n, m – positive integers describing the entries to take

Description:

This command takes a sublist of “list”, drops the rest, and re-
turns the selected sublist. The first calling sequence selects the
first “n” entries in “list”. The second form takes the last “n”
entries. The last invocation selects the sublist beginning with
entry number “m” and ending with the “n”-th entry.

Examples:

In> lst := {a,b,c,d,e,f,g};

Out> {a,b,c,d,e,f,g};

In> Take(lst, 2);

Out> {a,b};

In> Take(lst, -3);

Out> {e,f,g};

In> Take(lst, {2,4});

Out> {b,c,d};

See also: Drop, Select, Remove

Partition — partition a list in sub-
lists of equal length

(standard library)

Calling format:

Partition(list, n)

Parameters:

list – list to partition
n – length of partitions

Description:

This command partitions “list” into non-overlapping sublists
of length “n” and returns a list of these sublists. The first “n”
entries in “list” form the first partition, the entries from position
“n+1” up to “2n” form the second partition, and so on. If “n”
does not divide the length of “list”, the remaining entries will
be thrown away. If “n” equals zero, an empty list is returned.

Examples:

In> Partition({a,b,c,d,e,f,}, 2);

Out> {{a,b},{c,d},{e,f}};

In> Partition(1 .. 11, 3);

Out> {{1,2,3},{4,5,6},{7,8,9}};

See also: Take, Permutations

Assoc — return element stored in as-
sociation list

(standard library)

Calling format:

Assoc(key, alist)

Parameters:

key – string, key under which element is stored
alist – association list to examine

Description:

The association list “alist” is searched for an entry stored with
index “key”. If such an entry is found, it is returned. Otherwise
the atom Empty is returned.

Association lists are represented as a list of two-entry lists.
The first element in the two-entry list is the key, the second
element is the value stored under this key.

The call Assoc(key, alist) can (probably more intuitively)
be accessed as alist[key].

Examples:

In> writer := {};

Out> {};

In> writer["Iliad"] := "Homer";

Out> True;

In> writer["Henry IV"] := "Shakespeare";

Out> True;

In> writer["Ulysses"] := "James Joyce";

Out> True;

In> Assoc("Henry IV", writer);

Out> {"Henry IV","Shakespeare"};

In> Assoc("War and Peace", writer);

Out> Empty;

See also: AssocIndices, [], :=, AssocDelete

77

AssocIndices — return the keys in
an association list

(standard library)

Calling format:

AssocIndices(alist)

Parameters:

alist – association list to examine

Description:

All the keys in the association list “alist” are assembled in a list
and this list is returned.

Examples:

In> writer := {};

Out> {};

In> writer["Iliad"] := "Homer";

Out> True;

In> writer["Henry IV"] := "Shakespeare";

Out> True;

In> writer["Ulysses"] := "James Joyce";

Out> True;

In> AssocIndices(writer);

Out> {"Iliad","Henry IV","Ulysses"};

See also: Assoc, AssocDelete

AssocDelete — delete an entry in an
association list

(standard library)

Calling format:

AssocDelete(alist, "key")

AssocDelete(alist, {key, value})

Parameters:

alist – association list
"key" – string, association key
value – value of the key to be deleted

Description:

The key "key" in the association list alist is deleted. (The
list itself is modified.) If the key was found and successfully
deleted, returns True, otherwise if the given key was not found,
the function returns False.

The second, longer form of the function deletes the entry that
has both the specified key and the specified value. It can be used
for two purposes:

1. to make sure that we are deleting the right value;

2. if several values are stored on the same key, to delete the
specified entry (see the last example).

At most one entry is deleted.

Examples:

In> writer := {};

Out> {};

In> writer["Iliad"] := "Homer";

Out> True;

In> writer["Henry IV"] := "Shakespeare";

Out> True;

In> writer["Ulysses"] := "James Joyce";

Out> True;

In> AssocDelete(writer, "Henry IV")

Out> True;

In> AssocDelete(writer, "Henry XII")

Out> False;

In> writer

Out> {{"Ulysses","James Joyce"},

{"Iliad","Homer"}};

In> DestructiveAppend(writer,

{"Ulysses", "Dublin"});

Out> {{"Iliad","Homer"},{"Ulysses","James Joyce"},

{"Ulysses","Dublin"}};

In> writer["Ulysses"];

Out> "James Joyce";

In> AssocDelete(writer,{"Ulysses","James Joyce"});

Out> True;

In> writer

Out> {{"Iliad","Homer"},{"Ulysses","Dublin"}};

See also: Assoc, AssocIndices

Flatten — flatten expression w.r.t.
some operator

(standard library)

Calling format:

Flatten(expression,operator)

Parameters:

expression – an expression
operator – string with the contents of an infix operator.

Description:

Flatten flattens an expression with respect to a specific operator,
converting the result into a list. This is useful for unnesting an
expression. Flatten is typically used in simple simplification
schemes.

Examples:

In> Flatten(a+b*c+d,"+");

Out> {a,b*c,d};

In> Flatten({a,{b,c},d},"List");

Out> {a,b,c,d};

See also: UnFlatten

UnFlatten — inverse operation of
Flatten

(standard library)

Calling format:

78

UnFlatten(list,operator,identity)

Parameters:

list – list of objects the operator is to work on
operator – infix operator
identity – identity of the operator

Description:

UnFlatten is the inverse operation of Flatten. Given a list,
it can be turned into an expression representing for instance
the addition of these elements by calling UnFlatten with “+”
as argument to operator, and 0 as argument to identity (0 is
the identity for addition, since a+0=a). For multiplication the
identity element would be 1.

Examples:

In> UnFlatten({a,b,c},"+",0)

Out> a+b+c;

In> UnFlatten({a,b,c},"*",1)

Out> a*b*c;

See also: Flatten

Type — return the type of an expres-
sion

(Yacas internal)

Calling format:

Type(expr)

Parameters:

expr – expression to examine

Description:

The type of the expression “expr” is represented as a string and
returned. So, if “expr” is a list, the string "List" is returned.
In general, the top-level operator of “expr” is returned. If the
argument “expr” is an atom, the result is the empty string "".

Examples:

In> Type({a,b,c});

Out> "List";

In> Type(a*(b+c));

Out> "*";

In> Type(123);

Out> "";

See also: IsAtom, NrArgs

NrArgs — return number of top-level
arguments

(standard library)

Calling format:

NrArgs(expr)

Parameters:

expr – expression to examine

Description:

This function evaluates to the number of top-level arguments
of the expression “expr”. The argument “expr” may not be an
atom, since that would lead to an error.

Examples:

In> NrArgs(f(a,b,c))

Out> 3;

In> NrArgs(Sin(x));

Out> 1;

In> NrArgs(a*(b+c));

Out> 2;

See also: Type, Length

VarList — list of variables appearing
in an expression

VarListArith — list of variables ap-
pearing in an expression

VarListSome — list of variables ap-
pearing in an expression

(standard library)

Calling format:

VarList(expr)

VarListArith(expr)

VarListSome(expr, list)

Parameters:

expr – an expression
list – a list of function atoms

Description:

The command VarList(expr) returns a list of all variables that
appear in the expression expr. The expression is traversed re-
cursively.

The command VarListSome looks only at arguments of func-
tions in the list. All other functions are considered ”opaque”
(as if they do not contain any variables) and their arguments are
not checked. For example, VarListSome(a + Sin(b-c)) will re-
turn {a, b, c}, but VarListSome(a*Sin(b-c), {*}) will not
look at arguments of Sin() and will return {a,Sin(b-c)}. Here
Sin(b-c) is considered a ”variable” because the function Sin

does not belong to list.
The command VarListArith returns a list of all variables

that appear arithmetically in the expression expr. This is im-
plemented through VarListSome by restricting to the arithmetic
functions +, -, *, /. Arguments of other functions are not
checked.

Note that since the operators “+” and ”-” are prefix as well
as infix operators, it is currently required to use Atom("+") to
obtain the unevaluated atom ”+”.

79

Examples:

In> VarList(Sin(x))

Out> {x};

In> VarList(x+a*y)

Out> {x,a,y};

In> VarListSome(x+a*y, {Atom("+")})

Out> {x,a*y};

In> VarListArith(x+y*Cos(Ln(x)/x))

Out> {x,y,Cos(Ln(x)/x)}

In> VarListArith(x+a*y^2-1)

Out> {x,a,y^2};

See also: IsFreeOf, IsVariable, FuncList, HasExpr, HasFunc

FuncList — list of functions used in
an expression

FuncListArith — list of functions
used in an expression

FuncListSome — list of functions used
in an expression

(standard library)

Calling format:

FuncList(expr)

FuncListArith(expr)

FuncListSome(expr, list)

Parameters:

expr – an expression
list – list of function atoms to be considered ”transparent”

Description:

The command FuncList(expr) returns a list of all function
atoms that appear in the expression expr. The expression is
recursively traversed.

The command FuncListSome(expr, list) does the same,
except it only looks at arguments of a given list of func-
tions. All other functions become ”opaque” (as if they do not
contain any other functions). For example, FuncListSome(a +

Sin(b-c)) will see that the expression has a ”-” operation and
return {+,Sin,-}, but FuncListSome(a + Sin(b-c), {+}) will
not look at arguments of Sin() and will return {+,Sin}.

FuncListArith is defined through FuncListSome to look only
at arithmetic operations +, -, *, /.

Note that since the operators “+” and ”-” are prefix as well
as infix operators, it is currently required to use Atom("+") to
obtain the unevaluated atom ”+”.

Examples:

In> FuncList(x+y*Cos(Ln(x)/x))

Out> {+,*,Cos,/,Ln};

In> FuncListArith(x+y*Cos(Ln(x)/x))

Out> {+,*,Cos};

In> FuncListSome({a+b*2,c/d},{List})

Out> {List,+,/};

See also: VarList, HasExpr, HasFunc

BubbleSort — sort a list

HeapSort — sort a list

(standard library)

Calling format:

BubbleSort(list, compare)

HeapSort(list, compare)

Parameters:

list – list to sort
compare – function used to compare elements of list

Description:

This command returns list after it is sorted using compare

to compare elements. The function compare should accept two
arguments, which will be elements of list, and compare them.
It should return True if in the sorted list the second argument
should come after the first one, and False otherwise.

The function BubbleSort uses the so-called ”bubble sort” al-
gorithm to do the sorting by swapping elements that are out
of order. This algorithm is easy to implement, though it is not
particularly fast. The sorting time is proportional to n2 where
n is the length of the list.

The function HeapSort uses a recursive algorithm ”heapsort”
and is much faster for large lists. The sorting time is propor-
tional to n lnn where n is the length of the list.

Examples:

In> BubbleSort({4,7,23,53,-2,1}, "<");

Out> {-2,1,4,7,23,53};

In> HeapSort({4,7,23,53,-2,1}, ">");

Out> {53,23,7,4,1,-2};

PrintList — print list with padding

(standard library)

Calling format:

PrintList(list)

PrintList(list, padding);

Parameters:

list – a list to be printed
padding – (optional) a string

Description:

Prints list and inserts the padding string between each pair of
items of the list. Items of the list which are strings are printed
without quotes, unlike Write(). Items of the list which are
themselves lists are printed inside braces {}. If padding is not
specified, a standard one is used (comma, space).

Examples:

In> PrintList({a,b,{c, d}}, " .. ")

Out> " a .. b .. { c .. d}";

See also: Write, WriteString

80

Table — evaluate while some vari-
able ranges over interval

(standard library)

Calling format:

Table(body, var, from, to, step)

Parameters:

body – expression to evaluate multiple times

var – variable to use as loop variable

from – initial value for ”var”

to – final value for ”var”

step – step size with which ”var” is incremented

Description:

This command generates a list of values from “body”, by as-
signing variable “var” values from “from” up to “to”, incre-
menting “step” each time. So, the variable “var” first gets the
value “from”, and the expression “body” is evaluated. Then
the value “from”+”step” is assigned to “var” and the expres-
sion “body” is again evaluated. This continues, incrementing
“var” with “step” on every iteration, until “var” exceeds “to”.
At that moment, all the results are assembled in a list and this
list is returned.

Examples:

In> Table(i!, i, 1, 9, 1);

Out> {1,2,6,24,120,720,5040,40320,362880};

In> Table(i, i, 3, 16, 4);

Out> {3,7,11,15};

In> Table(i^2, i, 10, 1, -1);

Out> {100,81,64,49,36,25,16,9,4,1};

See also: For, MapSingle, .., TableForm

TableForm — print each entry in a
list on a line

(standard library)

Calling format:

TableForm(list)

Parameters:

list – list to print

Description:

This functions writes out the list list in a better readable form,
by printing every element in the list on a separate line.

Examples:

In> TableForm(Table(i!, i, 1, 10, 1));

1

2

6

24

120

720

5040

40320

362880

3628800

Out> True;

See also: PrettyForm, Echo, Table

GlobalPop — restore variables using
a global stack

GlobalPush — save variables using a
global stack

(standard library)

Calling format:

GlobalPop(var)

GlobalPop()

GlobalPush(expr)

Parameters:

var – atom, name of variable to restore from the stack
expr – expression, value to save on the stack

Description:

These functions operate with a global stack, currently imple-
mented as a list that is not accessible externally (it is protected
through LocalSymbols).

GlobalPush stores a value on the stack. GlobalPop removes
the last pushed value from the stack. If a variable name is given,
the variable is assigned, otherwise the popped value is returned.

If the global stack is empty, an error message is printed.

Examples:

In> GlobalPush(3)

Out> 3;

In> GlobalPush(Sin(x))

Out> Sin(x);

In> GlobalPop(x)

Out> Sin(x);

In> GlobalPop(x)

Out> 3;

In> x

Out> 3;

See also: Push, PopFront

81

Chapter 22

Functional operators

These operators can help the user to program in the style of
functional programming languages such as Miranda or Haskell.

: — prepend item to list, or con-
catenate strings

(standard library)

Calling format:

item : list

string1 : string2

Precedence: 70

Parameters:

item – an item to be prepended to a list
list – a list
string1 – a string
string2 – a string

Description:

The first form prepends “item” as the first entry to the list
“list”. The second form concatenates the strings “string1” and
“string2”.

Examples:

In> a:b:c:{}

Out> {a,b,c};

In> "This":"Is":"A":"String"

Out> "ThisIsAString";

See also: Concat, ConcatStrings

@ — apply a function

(standard library)

Calling format:

fn @ arglist

Precedence: 600

Parameters:

fn – function to apply
arglist – single argument, or a list of arguments

Description:

This function is a shorthand for Apply. It applies the function
“fn” to the argument(s) in “arglist” and returns the result. The
first parameter “fn” can either be a string containing the name
of a function or a pure function.

Examples:

In> "Sin" @ a

Out> Sin(a);

In> {{a},Sin(a)} @ a

Out> Sin(a);

In> "f" @ {a,b}

Out> f(a,b);

See also: Apply

/@ — apply a function to all entries
in a list

(standard library)

Calling format:

fn /@ list

Precedence: 600

Parameters:

fn – function to apply

list – list of arguments

Description:

This function is a shorthand for MapSingle. It successively ap-
plies the function “fn” to all the entries in “list” and returns
a list contains the results. The parameter “fn” can either be a
string containing the name of a function or a pure function.

Examples:

In> "Sin" /@ {a,b}

Out> {Sin(a),Sin(b)};

In> {{a},Sin(a)*a} /@ {a,b}

Out> {Sin(a)*a,Sin(b)*b};

See also: MapSingle, Map, MapArgs

82

.. — construct a list of consecutive
integers

(standard library)

Calling format:

n .. m

Precedence: 600

Parameters:

n – integer. the first entry in the list
m – integer, the last entry in the list

Description:

This command returns the list {n, n+1, n+2, ..., m}. If m is
smaller than n, the empty list is returned. Note that the .. op-
erator should be surrounded by spaces to keep the parser happy,
if “n” is a number. So one should write “1 .. 4” instead of
”1..4”.

Example:

In> 1 .. 4

Out> {1,2,3,4};

See also: Table

NFunction — make wrapper for nu-
meric functions

(standard library)

Calling format:

NFunction("newname","funcname", {arglist})

Parameters:

"newname" – name of new function
"funcname" – name of an existing function
arglist – symbolic list of arguments

Description:

This function will define a function named “newname” with
the same arguments as an existing function named “funcname”.
The new function will evaluate and return the expression “func-
name(arglist)“ only when all items in the argument list arglist
are numbers, and return unevaluated otherwise.

This can be useful when plotting functions defined through
other Yacas routines that cannot return unevaluated.

If the numerical calculation does not return a number (for
example, it might return the atom nan, ”not a number”, for
some arguments), then the new function will return Undefined.

Examples:

In> f(x) := N(Sin(x));

Out> True;

In> NFunction("f1", "f", {x});

Out> True;

In> f1(a);

Out> f1(a);

In> f1(0);

Out> 0;

Suppose we need to define a complicated function t(x) which
cannot be evaluated unless x is a number:

In> t(x) := If(x<=0.5, 2*x, 2*(1-x));

Out> True;

In> t(0.2);

Out> 0.4;

In> t(x);

In function "If" :

bad argument number 1 (counting from 1)

CommandLine(1) : Invalid argument

Then, we can use NFunction() to define a wrapper t1(x)

around t(x) which will not try to evaluate t(x) unless x is
a number.

In> NFunction("t1", "t", {x})

Out> True;

In> t1(x);

Out> t1(x);

In> t1(0.2);

Out> 0.4;

Now we can plot the function.

In> Plot2D(t1(x), -0.1: 1.1)

Out> True;

See also: MacroRule

Where — substitute result into ex-
pression

(standard library)

Calling format:

expr Where x==v

expr Where x1==v1 And x2==v2 And ...

expr Where {x1==v1 And x2==v2,x1==v3

And x2==v4,...}

Parameters:

expr - expression to evaluate
x - variable to set
v - value to substitute for variable

Description:

The operator Where fills in values for variables, in its simplest
form. It accepts sets of variable/value pairs defined as

var1==val1 And var2==val2 And ...

and fills in the corresponding values. Lists of value pairs are
also possible, as:

{var1==val1 And var2==val2, var1==val3

And var2==val4}

These values might be obtained through Solve.

Examples:

In> x^2+y^2 Where x==2

Out> y^2+4;

In> x^2+y^2 Where x==2 And y==3

Out> 13;

In> x^2+y^2 Where {x==2 And y==3}

Out> {13};

In> x^2+y^2 Where {x==2 And y==3,x==4 And y==5}

Out> {13,41};

See also: Solve, AddTo

83

AddTo — add an equation to a set of
equations or set of set of equations

(standard library)

Calling format:

eq1 AddTo eq2

Parameters:

eq - (set of) set of equations

Description:

Given two (sets of) sets of equations, the command AddTo com-
bines multiple sets of equations into one.

A list a,b means that a is a solution, OR b is a solution.
AddTo then acts as a AND operation:

(a or b) and (c or d) =>

(a or b) Addto (c or d) =>

(a and c) or (a and d) or (b and c)

or (b and d)

This function is useful for adding an identity to an al-
ready existing set of equations. Suppose a solve command
returned a>=0 And x==a,a<0 And x== -a from an expression
x==Abs(a), then a new identity a==2 could be added as fol-
lows:

In> a==2 AddTo {a>=0 And x==a,a<0 And x== -a}

Out> {a==2 And a>=0 And x==a,a==2 And a<0

And x== -a};

Passing this set of set of identities back to solve, solve should
recognize that the second one is not a possibility any more, since
a==2 And a¡0 can never be true at the same time.

Examples:

In> {A==2,c==d} AddTo {b==3 And d==2}

Out> {A==2 And b==3 And d==2,c==d

And b==3 And d==2};

In> {A==2,c==d} AddTo {b==3, d==2}

Out> {A==2 And b==3,A==2 And d==2,c==d

And b==3,c==d And d==2};

See also: Where, Solve

84

Chapter 23

Control flow functions

MaxEvalDepth — set the maximum
evaluation depth

(Yacas internal)

Calling format:

MaxEvalDepth(n)

Parameters:

n – new maximum evaluation depth

Description:

Use this command to set the maximum evaluation depth to
the integer “n”. The default value is 1000. The function
MaxEvalDepth returns True.

The point of having a maximum evaluation depth is to catch
any infinite recursion. For example, after the definition f(x)

:= f(x), evaluating the expression f(x) would call f(x), which
would call f(x), etc. The interpreter will halt if the maxi-
mum evaluation depth is reached. Also indirect recursion, e.g.
the pair of definitions f(x) := g(x) and g(x) := f(x), will be
caught.

Examples:

An example of an infinite recursion, caught because the maxi-
mum evaluation depth is reached.

In> f(x) := f(x)

Out> True;

In> f(x)

Error on line 1 in file [CommandLine]

Max evaluation stack depth reached.

Please use MaxEvalDepth to increase the stack

size as needed.

However, a long calculation may cause the maximum evalua-
tion depth to be reached without the presence of infinite recur-
sion. The function MaxEvalDepth is meant for these cases.

In> 10 # g(0) <-- 1;

Out> True;

In> 20 # g(n_IsPositiveInteger) <-- \

2 * g(n-1);

Out> True;

In> g(1001);

Error on line 1 in file [CommandLine]

Max evaluation stack depth reached.

Please use MaxEvalDepth to increase the stack

size as needed.

In> MaxEvalDepth(10000);

Out> True;

In> g(1001);

Out> 21430172143725346418968500981200036211228096234

1106721488750077674070210224987224498639675763139171

6255189345835106293650374290571384628087196915514939

7149607869135549648461970842149210124742283755908364

3060929499671638825347975351183310878921541258291423

92955373084335320859663305248773674411336138752;

Hold — keep expression unevaluated

(Yacas internal)

Calling format:

Hold(expr)

Parameters:

expr – expression to keep unevaluated

Description:

The expression “expr” is returned unevaluated. This is useful
to prevent the evaluation of a certain expression in a context in
which evaluation normally takes place.

The function UnList() also leaves its result unevaluated.
Both functions stop the process of evaluation (no more rules
will be applied).

Examples:

In> Echo({ Hold(1+1), "=", 1+1 });

1+1 = 2

Out> True;

See also: Eval, HoldArg, UnList

Eval — force evaluation of expres-
sion

(Yacas internal)

Calling format:

Eval(expr)

Parameters:

expr – expression to evaluate

85

Description:

This function explicitly requests an evaluation of the expression
“expr”, and returns the result of this evaluation.

Examples:

In> a := x;

Out> x;

In> x := 5;

Out> 5;

In> a;

Out> x;

In> Eval(a);

Out> 5;

The variable a is bound to x, and x is bound to 5. Hence
evaluating a will give x. Only when an extra evaluation of a is
requested, the value 5 is returned.

Note that the behavior would be different if we had exchanged
the assignments. If the assignment a := x were given while x

had the value 5, the variable a would also get the value 5 because
the assignment operator := evaluates the right-hand side.

See also: Hold, HoldArg, :=

While — loop while a condition is
met

(Yacas internal)

Calling format:

While(pred) body

Parameters:

pred – predicate deciding whether to keep on looping
body – expression to loop over

Description:

Keep on evaluating “body” while “pred” evaluates to True.
More precisely, While evaluates the predicate “pred”, which
should evaluate to either True or False. If the result is True, the
expression ”body” is evaluated and then the predicate “pred” is
again evaluated. If it is still True, the expressions ”body” and
”pred” are again evaluated and so on until “pred” evaluates to
False. At that point, the loop terminates and While returns
True.

In particular, if “pred” immediately evaluates to False, the
body is never executed. While is the fundamental looping con-
struct on which all other loop commands are based. It is equiv-
alent to the while command in the programming language C.

Examples:

In> x := 0;

Out> 0;

In> While (x! < 10^6) \

[Echo({x, x!}); x++;];

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

Out> True;

See also: Until, For

Until — loop until a condition is met

(standard library)

Calling format:

Until(pred) body

Parameters:

pred – predicate deciding whether to stop
body – expression to loop over

Description:

Keep on evaluating “body” until “pred” becomes True. More
precisely, Until first evaluates the expression “body”. Then the
predicate “pred” is evaluated, which should yield either True or
False. In the latter case, the expressions ”body” and “pred” are
again evaluated and this continues as long as “pred” is False.
As soon as ”pred” yields True, the loop terminates and Until

returns True.
The main difference with While is that Until always evalu-

ates the body at least once, but While may not evaluate the
body at all. Besides, the meaning of the predicate is reversed:
While stops if “pred” is False while Until stops if ”pred” is
True. The command Until(pred) body; is equivalent to pred;

While(Not pred) body;. In fact, the implementation of Until

is based on the internal command While. The Until command
can be compared to the do ... while construct in the pro-
gramming language C.

Examples:

In> x := 0;

Out> 0;

In> Until (x! > 10^6) \

[Echo({x, x!}); x++;];

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

Out> True;

See also: While, For

If — branch point

(Yacas internal)

Calling format:

86

If(pred, then)

If(pred, then, else)

Parameters:

pred – predicate to test
then – expression to evaluate if ”pred” is True

else – expression to evaluate if ”pred” is False

Description:

This command implements a branch point. The predicate
“pred” is evaluated, which should result in either True or False.
In the first case, the expression ”then” is evaluated and re-
turned. If the predicate yields False, the expression ”else” (if
present) is evaluated and returned. If there is no “else” branch
(i.e. if the first calling sequence is used), the If expression re-
turns False.

Examples:

The sign function is defined to be 1 if its argument is positive
and -1 if its argument is negative. A possible implementation is

In> mysign(x) := If (IsPositiveReal(x), 1, -1);

Out> True;

In> mysign(Pi);

Out> 1;

In> mysign(-2.5);

Out> -1;

Note that this will give incorrect results, if “x” cannot be nu-
merically approximated.

In> mysign(a);

Out> -1;

Hence a better implementation would be

In> mysign(_x)_IsNumber(N(x)) <-- If \

(IsPositiveReal(x), 1, -1);

Out> True;

SystemCall — pass a command to the
shell

(Yacas internal)

Calling format:

SystemCall(str)

Parameters:

str – string containing the command to call

Description:

The command contained in the string “str” is executed by
the underlying operating system (OS). The return value of
SystemCall is True or False according to the exit code of the
command.

The SystemCall function is not allowed in the body of the
Secure command and will lead to an error.

Examples:

In a UNIX environment, the command SystemCall("ls")

would print the contents of the current directory.

In> SystemCall("ls")

AUTHORS

COPYING

ChangeLog

... (truncated to save space)

Out> True;

The standard UNIX command test returns success or failure
depending on conditions. For example, the following command
will check if a directory exists:

In> SystemCall("test -d scripts/")

Out> True;

Check that a file exists:

In> SystemCall("test -f COPYING")

Out> True;

In> SystemCall("test -f nosuchfile.txt")

Out> False;

See also: Secure

Function — declare or define a func-
tion

(standard library)

Calling format:

Function() func(arglist)

Function() func(arglist, ...)

Function("op", {arglist}) body

Function("op", {arglist, ...}) body

Parameters:

func(args) – function declaration, e.g. f(x,y)

"op" – string, name of the function
{arglist} – list of atoms, formal arguments to the function
... – literal ellipsis symbol ”...” used to denote a variable

number of arguments
body – expression comprising the body of the function

Description:

This command can be used to define a new function with named
arguments.

The number of arguments of the new function and their names
are determined by the list arglist. If the ellipsis ”...” follows
the last atom in arglist, a function with a variable number
of arguments is declared (using RuleBaseListed). Note that
the ellipsis cannot be the only element of arglist and must be
preceded by an atom.

A function with variable number of arguments can take more
arguments than elements in arglist; in this case, it obtains its
last argument as a list containing all extra arguments.

The short form of the Function call merely declares a
RuleBase for the new function but does not define any func-
tion body. This is a convenient shorthand for RuleBase and
RuleBaseListed, when definitions of the function are to be sup-
plied by rules. If the new function has been already declared
with the same number of arguments (with or without variable
arguments), Function returns false and does nothing.

The second, longer form of the Function call declares a func-
tion and also defines a function body. It is equivalent to a single

87

rule such as op(arg1, arg2) <-- body. The rule will be de-
clared at precedence 1025. Any previous rules associated with
"op" (with the same arity) will be discarded. More complicated
functions (with more than one body) can be defined by adding
more rules.

Examples:

This will declare a new function with two or more arguments,
but define no rules for it. This is equivalent to RuleBase ("f1",

{x, y, ...}).

In> Function() f1(x,y,...);

Out> True;

In> Function() f1(x,y);

Out> False;

This defines a function FirstOf which returns the first ele-
ment of a list. Equivalent definitions would be FirstOf(list)

<-- list[1] or FirstOf(list) := list[1].

In> Function("FirstOf", {list}) list[1];

Out> True;

In> FirstOf({a,b,c});

Out> a;

The following function will print all arguments to a string:

In> Function("PrintAll",{x, ...}) If(IsList(x),

PrintList(x), ToString()Write(x));

Out> True;

In> PrintAll(1):

Out> " 1";

In> PrintAll(1,2,3);

Out> " 1 2 3";

See also: TemplateFunction, Rule, RuleBase,
RuleBaseListed, :=, Retract

Macro — declare or define a macro

(standard library)

Calling format:

Macro() func(arglist)

Macro() func(arglist, ...)

Macro("op", {arglist}) body

Macro("op", {arglist, ...}) body

Parameters:

func(args) – function declaration, e.g. f(x,y)

"op" – string, name of the function
{arglist} – list of atoms, formal arguments to the function
... – literal ellipsis symbol ”...” used to denote a variable

number of arguments
body – expression comprising the body of the function

Description:

This does the same as Function, but for macros. One can define
a macro easily with this function, in stead of having to use
DefMacroRuleBase.

Examples:

the following example defines a looping function.

In> Macro("myfor",{init,pred,inc,body}) [@init;While(@pred)[@body;@inc;];True;];

Out> True;

In> a:=10

Out> 10;

Here this new macro myfor is used to loop, using a variable
a from the calling environment.

In> myfor(i:=1,i<10,i++,Echo(a*i))

10

20

30

40

50

60

70

80

90

Out> True;

In> i

Out> 10;

See also: Function, DefMacroRuleBase

Use — load a file, but not twice

(Yacas internal)

Calling format:

Use(name)

Parameters:

name – name of the file to load

Description:

If the file “name” has been loaded before, either by an earlier
call to Use or via the DefLoad mechanism, nothing happens.
Otherwise all expressions in the file are read and evaluated. Use
always returns True.

The purpose of this function is to make sure that the file will
at least have been loaded, but is not loaded twice.

See also: Load, DefLoad, DefaultDirectory

For — C-style for loop

(standard library)

Calling format:

For(init, pred, incr) body

Parameters:

init – expression for performing the initialization

pred – predicate deciding whether to continue the loop

incr – expression to increment the counter

body – expression to loop over

Description:

88

This commands implements a C style for loop. First of all,
the expression “init” is evaluated. Then the predicate “pred”
is evaluated, which should return True or False. Next the loop
is executed as long as the predicate yields True. One traversal
of the loop consists of the subsequent evaluations of “body”,
“incr”, and “pred”. Finally, the value True is returned.

This command is most often used in a form such as For(i=1,
i<=10, i++) body, which evaluates body with i subsequently
set to 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

The expression For(init, pred, incr) body is equivalent
to init; While(pred) [body; incr;].

Examples:

In> For (i:=1, i<=10, i++) Echo({i, i!});

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

Out> True;

See also: While, Until, ForEach

ForEach — loop over all entries in list

(standard library)

Calling format:

ForEach(var, list) body

Parameters:

var – looping variable

list – list of values to assign to ”var”

body – expression to evaluate with different values of ”var”

Description:

The expression “body” is evaluated multiple times. The first
time, “var” has the value of the first element of “list”, then it
gets the value of the second element and so on. ForEach returns
True.

Examples:

In> ForEach(i,{2,3,5,7,11}) Echo({i, i!});

2 2

3 6

5 120

7 5040

11 39916800

Out> True;

See also: For

Apply — apply a function to argu-
ments

(standard library)

Calling format:

Apply(fn, arglist)

Parameters:

fn – function to apply

arglist – list of arguments

Description:

This function applies the function “fn” to the arguments in “ar-
glist” and returns the result. The first parameter “fn” can either
be a string containing the name of a function or a pure func-
tion. Pure functions, modeled after lambda-expressions, have
the form “varlist,body”, where ”varlist” is the list of formal
parameters. Upon application, the formal parameters are as-
signed the values in “arglist” (the second parameter of Apply)
and the ”body” is evaluated.

Another way to define a pure function is with the Lambda
construct. Here, in stead of passing in “varlist,body”, one
can pass in “Lambda(varlist,body)“. Lambda has the advan-
tage that its arguments are not evaluated (using lists can have
undesirable effects because lists are evaluated). Lambda can be
used everywhere a pure function is expected, in principle, be-
cause the function Apply is the only function dealing with pure
functions. So all places where a pure function can be passed in
will also accept Lambda.

An shorthand for Apply is provided by the @ operator.

Examples:

In> Apply("+", {5,9});

Out> 14;

In> Apply({{x,y}, x-y^2}, {Cos(a), Sin(a)});

Out> Cos(a)-Sin(a)^2;

In> Apply(Lambda({x,y}, x-y^2), {Cos(a), Sin(a)});

Out> Cos(a)-Sin(a)^2

In> Lambda({x,y}, x-y^2) @ {Cos(a), Sin(a)}

Out> Cos(a)-Sin(a)^2

See also: Map, MapSingle, @

MapArgs — apply a function to all
top-level arguments

(standard library)

Calling format:

MapArgs(expr, fn)

Parameters:

expr – an expression to work on

fn – an operation to perform on each argument

Description:

89

Every top-level argument in “expr” is substituted by the result
of applying “fn” to this argument. Here “fn” can be either
the name of a function or a pure function (see Apply for more
information on pure functions).

Examples:

In> MapArgs(f(x,y,z),"Sin");

Out> f(Sin(x),Sin(y),Sin(z));

In> MapArgs({3,4,5,6}, {{x},x^2});

Out> {9,16,25,36};

See also: MapSingle, Map, Apply

Subst — perform a substitution

(standard library)

Calling format:

Subst(from, to) expr

Parameters:

from – expression to be substituted
to – expression to substitute for ”from”
expr – expression in which the substitution takes place

Description:

This function substitutes every occurrence of “from” in “expr”
by “to”. This is a syntactical substitution: only places where
“from” occurs as a subexpression are affected.

Examples:

In> Subst(x, Sin(y)) x^2+x+1;

Out> Sin(y)^2+Sin(y)+1;

In> Subst(a+b, x) a+b+c;

Out> x+c;

In> Subst(b+c, x) a+b+c;

Out> a+b+c;

The explanation for the last result is that the expression
a+b+c is internally stored as (a+b)+c. Hence a+b is a subex-
pression, but b+c is not.

See also: WithValue, /:

WithValue — temporary assignment
during an evaluation

(standard library)

Calling format:

WithValue(var, val, expr)

WithValue({var,...}, {val,...}, expr)

Parameters:

var – variable to assign to
val – value to be assigned to ”var”
expr – expression to evaluate with ”var” equal to ”val”

Description:

First, the expression “val” is assigned to the variable “var”.
Then, the expression “expr” is evaluated and returned. Finally,
the assignment is reversed so that the variable “var” has the
same value as it had before WithValue was evaluated.

The second calling sequence assigns the first element in the
list of values to the first element in the list of variables, the
second value to the second variable, etc.

Examples:

In> WithValue(x, 3, x^2+y^2+1);

Out> y^2+10;

In> WithValue({x,y}, {3,2}, x^2+y^2+1);

Out> 14;

See also: Subst, /:

/: — local simplification rules

/:: — local simplification rules

(standard library)

Calling format:

expression /: patterns

expressions /:: patterns

Precedence: 20000

Parameters:

expression – an expression
patterns – a list of patterns

Description:

Sometimes you have an expression, and you want to use specific
simplification rules on it that are not done by default. This can
be done with the /: and the /:: operators. Suppose we have
the expression containing things such as Ln(a*b), and we want
to change these into Ln(a)+Ln(b), the easiest way to do this is
using the /: operator, as follows:

In> Sin(x)*Ln(a*b)

Out> Sin(x)*Ln(a*b);

In> % /: { Ln(_x*_y) <- Ln(x)+Ln(y) }

Out> Sin(x)*(Ln(a)+Ln(b));

A whole list of simplification rules can be built up in the list,
and they will be applied to the expression on the left hand side
of /: .

The forms the patterns can have are one of:

pattern <- replacement

{pattern,replacement}

{pattern,postpredicate,replacement}

Note that for these local rules, <- should be used instead of
<-- which would be used in a global rule.

The /: operator traverses an expression much as Subst does,
that is, top down, trying to apply the rules from the beginning
of the list of rules to the end of the list of rules. If the rules
cannot be applied to an expression, it will try subexpressions of
that expression and so on.

It might be necessary sometimes to use the /:: operator,
which repeatedly applies the /: operator until the result doesn’t
change any more. Caution is required, since rules can contradict
each other, which could result in an infinite loop. To detect
this situation, just use /: repeatedly on the expression. The
repetitive nature should become apparent.

90

Examples:

In> Sin(u)*Ln(a*b) /: {Ln(_x*_y) <- Ln(x)+Ln(y)}

Out> Sin(u)*(Ln(a)+Ln(b));

In> Sin(u)*Ln(a*b) /:: { a <- 2, b <- 3 }

Out> Sin(u)*Ln(6);

See also: Subst

TraceStack — show calling stack af-
ter an error occurs

(Yacas internal)

Calling format:

TraceStack(expression)

Parameters:

expression – an expression to evaluate

Description:

TraceStack shows the calling stack after an error occurred. It
shows the last few items on the stack, not to flood the screen.
These are usually the only items of interest on the stack. This is
probably by far the most useful debugging function in Yacas. It
shows the last few things it did just after an error was generated
somewhere.

For each stack frame, it shows if the function evaluated was
a built-in function or a user-defined function, and for the user-
defined function, the number of the rule it is trying whether
it was evaluating the pattern matcher of the rule, or the body
code of the rule.

This functionality is not offered by default because it slows
down the evaluation code.

Examples:

Here is an example of a function calling itself recursively, causing
Yacas to flood its stack:

In> f(x):=f(Sin(x))

Out> True;

In> TraceStack(f(2))

Debug> 982 : f (Rule # 0 in body)

Debug> 983 : f (Rule # 0 in body)

Debug> 984 : f (Rule # 0 in body)

Debug> 985 : f (Rule # 0 in body)

Debug> 986 : f (Rule # 0 in body)

Debug> 987 : f (Rule # 0 in body)

Debug> 988 : f (Rule # 0 in body)

Debug> 989 : f (Rule # 0 in body)

Debug> 990 : f (Rule # 0 in body)

Debug> 991 : f (Rule # 0 in body)

Debug> 992 : f (Rule # 0 in body)

Debug> 993 : f (Rule # 0 in body)

Debug> 994 : f (Rule # 0 in body)

Debug> 995 : f (User function)

Debug> 996 : Sin (Rule # 0 in pattern)

Debug> 997 : IsList (Internal function)

Error on line 1 in file [CommandLine]

Max evaluation stack depth reached.

Please use MaxEvalDepth to increase the stack

size as needed.

See also: TraceExp, TraceRule

TraceExp — evaluate with tracing en-
abled

(Yacas internal)

Calling format:

TraceExp(expr)

Parameters:

expr – expression to trace

Description:

The expression “expr” is evaluated with the tracing facility
turned on. This means that every subexpression, which is eval-
uated, is shown before and after evaluation. Before evalua-
tion, it is shown in the form TrEnter(x), where x denotes the
subexpression being evaluated. After the evaluation the line
TrLeave(x,y) is printed, where y is the result of the evaluation.
The indentation shows the nesting level.

Note that this command usually generates huge amounts of
output. A more specific form of tracing (eg. TraceRule) is
probably more useful for all but very simple expressions.

Examples:

In> TraceExp(2+3);

TrEnter(2+3);

TrEnter(2);

TrLeave(2, 2);

TrEnter(3);

TrLeave(3, 3);

TrEnter(IsNumber(x));

TrEnter(x);

TrLeave(x, 2);

TrLeave(IsNumber(x),True);

TrEnter(IsNumber(y));

TrEnter(y);

TrLeave(y, 3);

TrLeave(IsNumber(y),True);

TrEnter(True);

TrLeave(True, True);

TrEnter(MathAdd(x,y));

TrEnter(x);

TrLeave(x, 2);

TrEnter(y);

TrLeave(y, 3);

TrLeave(MathAdd(x,y),5);

TrLeave(2+3, 5);

Out> 5;

See also: TraceStack, TraceRule

TraceRule — turn on tracing for a
particular function

(Yacas internal)

Calling format:

TraceRule(template) expr

Parameters:

91

template – template showing the operator to trace
expr – expression to evaluate with tracing on

Description:

The tracing facility is turned on for subexpressions of the form
“template”, and the expression “expr” is evaluated. The tem-
plate “template” is an example of the function to trace on.
Specifically, all subexpressions with the same top-level opera-
tor and arity as “template” are shown. The subexpressions are
displayed before (indicated with TrEnter) and after (TrLeave)
evaluation. In between, the arguments are shown before and
after evaluation (TrArg). Only functions defined in scripts can
be traced.

This is useful for tracing a function that is called from within
another function. This way you can see how your function be-
haves in the environment it is used in.

Examples:

In> TraceRule(x+y) 2+3*5+4;

TrEnter(2+3*5+4);

TrEnter(2+3*5);

TrArg(2, 2);

TrArg(3*5, 15);

TrLeave(2+3*5, 17);

TrArg(2+3*5, 17);

TrArg(4, 4);

TrLeave(2+3*5+4, 21);

Out> 21;

See also: TraceStack, TraceExp

Time — measure the time taken by a
function

(standard library)

Calling format:

Time(expr)

Parameters:

expr – any expression

Description:

The function Time(expr) evaluates the expression expr and
prints the time in seconds needed for the evaluation. The time
is printed to the current output stream. The built-in function
GetTime is used for timing.

The result is the “user time” as reported by the OS, not the
real (“wall clock”) time. Therefore, any CPU-intensive pro-
cesses running alongside Yacas will not significantly affect the
result of Time.

Example:

In> Time(N(MathLog(1000),40))

0.34 seconds taken

Out> 6.9077552789821370520539743640530926228033;

See also: GetTime

92

Chapter 24

Predicates

A predicate is a function that returns a boolean value, i.e.
True or False. Predicates are often used in patterns, For in-
stance, a rule that only holds for a positive integer would use a
pattern such as n IsPositiveInteger.

!= — test for “not equal”

(standard library)

Calling format:

e1 != e2

Precedence: 90

Parameters:

e1, e2 – expressions to be compared

Description:

Both expressions are evaluated and compared. If they turn out
to be equal, the result is False. Otherwise, the result is True.

The expression e1 != e2 is equivalent to Not(e1 = e2).

Examples:

In> 1 != 2;

Out> True;

In> 1 != 1;

Out> False;

See also: =

= — test for equality of expressions

(standard library)

Calling format:

e1 = e2

Precedence: 90

Parameters:

e1, e2 – expressions to be compared

Description:

Both expressions are evaluated and compared. If they turn out
to be equal, the result is True. Otherwise, the result is False.
The function Equals does the same.

Note that the test is on syntactic equality, not mathematical
equality. Hence even if the result is False, the expressions can
still be mathematically equal; see the examples below. Put oth-
erwise, this function tests whether the two expressions would be
displayed in the same way if they were printed.

Examples:

In> e1 := (x+1) * (x-1);

Out> (x+1)*(x-1);

In> e2 := x^2 - 1;

Out> x^2-1;

In> e1 = e2;

Out> False;

In> Expand(e1) = e2;

Out> True;

See also: !=, Equals

Not — logical negation

(Yacas internal)

Calling format:

Not expr

Parameters:

expr – a boolean expression

Description:

Not returns the logical negation of the argument expr. If expr

is False it returns True, and if expr is True, Not expr returns
False. If the argument is neither True nor False, it returns the
entire expression with evaluated arguments.

Examples:

In> Not True

Out> False;

In> Not False

Out> True;

In> Not(a)

Out> Not a;

See also: And, Or

93

And — logical conjunction

(Yacas internal)

Calling format:

a1 And a2

Precedence: 1000

And(a1, a2, a3, ..., aN)

Parameters:

a1, ..., aN – boolean values (may evaluate to True or False)

Description:

This function returns True if all arguments are true. The And

operation is ”lazy”, i.e. it returns False as soon as a False

argument is found (from left to right). If an argument other than
True or False is encountered a new And expression is returned
with all arguments that didn’t evaluate to True or False yet.

Examples:

In> True And False

Out> False;

In> And(True,True)

Out> True;

In> False And a

Out> False;

In> True And a

Out> And(a);

In> And(True,a,True,b)

Out> b And a;

See also: Or, Not

Or — logical disjunction

(Yacas internal)

Calling format:

a1 Or a2

Precedence: 1010

Or(a1, a2, a3, ..., aN)

Parameters:

a1, ..., aN – boolean expressions (may evaluate to True or False)

Description:

This function returns True if an argument is encountered that is
true (scanning from left to right). The Or operation is ”lazy”, i.e.
it returns True as soon as a True argument is found (from left to
right). If an argument other than True or False is encountered,
an unevaluated Or expression is returned with all arguments
that didn’t evaluate to True or False yet.

Examples:

In> True Or False

Out> True;

In> False Or a

Out> Or(a);

In> Or(False,a,b,True)

Out> True;

See also: And, Not

IsFreeOf — test whether expression
depends on variable

(standard library)

Calling format:

IsFreeOf(var, expr)

IsFreeOf({var, ...}, expr)

Parameters:

expr – expression to test
var – variable to look for in ”expr”

Description:

This function checks whether the expression “expr” (after being
evaluated) depends on the variable “var”. It returns False if
this is the case and True otherwise.

The second form test whether the expression depends on any
of the variables named in the list. The result is True if none of
the variables appear in the expression and False otherwise.

Examples:

In> IsFreeOf(x, Sin(x));

Out> False;

In> IsFreeOf(y, Sin(x));

Out> True;

In> IsFreeOf(x, D(x) a*x+b);

Out> True;

In> IsFreeOf({x,y}, Sin(x));

Out> False;

The third command returns True because the expression D(x)

a*x+b evaluates to a, which does not depend on x.

See also: Contains

IsZeroVector — test whether list
contains only zeroes

(standard library)

Calling format:

IsZeroVector(list)

Parameters:

list – list to compare against the zero vector

Description:

The only argument given to IsZeroVector should be a list. The
result is True if the list contains only zeroes and False otherwise.

Examples:

In> IsZeroVector({0, x, 0});

Out> False;

In> IsZeroVector({x-x, 1 - D(x) x});

Out> True;

See also: IsList, ZeroVector

94

IsNonObject — test whether argu-
ment is not an Object()

(standard library)

Calling format:

IsNonObject(expr)

Parameters:

expr – the expression to examine

Description:

This function returns True if ”expr” is not of the form
Object(...) and False otherwise.

Bugs

In fact, the result is always True.

See also: Object

IsEven — test for an even integer

(standard library)

Calling format:

IsEven(n)

Parameters:

n – integer to test

Description:

This function tests whether the integer “n” is even. An integer
is even if it is divisible by two. Hence the even numbers are 0,
2, 4, 6, 8, 10, etc., and -2, -4, -6, -8, -10, etc.

Examples:

In> IsEven(4);

Out> True;

In> IsEven(-1);

Out> False;

See also: IsOdd, IsInteger

IsOdd — test for an odd integer

(standard library)

Calling format:

IsOdd(n)

Parameters:

n – integer to test

Description:

This function tests whether the integer “n” is odd. An integer
is odd if it is not divisible by two. Hence the odd numbers are
1, 3, 5, 7, 9, etc., and -1, -3, -5, -7, -9, etc.

Examples:

In> IsOdd(4);

Out> False;

In> IsOdd(-1);

Out> True;

See also: IsEven, IsInteger

IsEvenFunction — Return true if
function is an even function, False
otherwise

IsOddFunction — Return true if
function is an odd function, False
otherwise

(standard library)

Calling format:

IsEvenFunction(expression,variable)

IsOddFunction(expression,variable)

Parameters:

expression – mathematical expression variable – variable

Description:

These functions return True if Yacas can determine that the
function is even or odd respectively. Even functions are defined
to be functions that have the property:

f (x) = f (−x)

And odd functions have the property:

f (x) = −f (−x)

Sin(x) is an example of an odd function, and Cos(x) is an
example of an even function.

As a side note, one can decompose a function into an even
and an odd part:

f (x) = feven (x) + fodd (x)

Where

feven (x) =
f (x) + f (−x)

2
and

fodd (x) =
f (x)− f (−x)

2

Example:

In> IsEvenFunction(Cos(b*x),x)

Out> True

In> IsOddFunction(Cos(b*x),x)

Out> False

In> IsOddFunction(Sin(b*x),x)

Out> True

In> IsEvenFunction(Sin(b*x),x)

Out> False

In> IsEvenFunction(1/x^2,x)

Out> True

In> IsEvenFunction(1/x,x)

Out> False

In> IsOddFunction(1/x,x)

Out> True

In> IsOddFunction(1/x^2,x)

Out> False

See also: Sin, Cos

95

IsFunction — test for a composite
object

(Yacas internal)

Calling format:

IsFunction(expr)

Parameters:

expr – expression to test

Description:

This function tests whether “expr” is a composite object, i.e.
not an atom. This includes not only obvious functions such as
f(x), but also expressions such as x+5 and lists.

Examples:

In> IsFunction(x+5);

Out> True;

In> IsFunction(x);

Out> False;

See also: IsAtom, IsList, Type

IsAtom — test for an atom

(Yacas internal)

Calling format:

IsAtom(expr)

Parameters:

expr – expression to test

Description:

This function tests whether “expr” is an atom. Numbers,
strings, and variables are all atoms.

Examples:

In> IsAtom(x+5);

Out> False;

In> IsAtom(5);

Out> True;

See also: IsFunction, IsNumber, IsString

IsString — test for an string

(Yacas internal)

Calling format:

IsString(expr)

Parameters:

expr – expression to test

Description:

This function tests whether “expr” is a string. A string is a text
within quotes, e.g. "duh".

Examples:

In> IsString("duh");

Out> True;

In> IsString(duh);

Out> False;

See also: IsAtom, IsNumber

IsNumber — test for a number

(Yacas internal)

Calling format:

IsNumber(expr)

Parameters:

expr – expression to test

Description:

This function tests whether “expr” is a number. There are two
kinds of numbers, integers (e.g. 6) and reals (e.g. -2.75 or
6.0). Note that a complex number is represented by the Complex
function, so IsNumber will return False.

Examples:

In> IsNumber(6);

Out> True;

In> IsNumber(3.25);

Out> True;

In> IsNumber(I);

Out> False;

In> IsNumber("duh");

Out> False;

See also: IsAtom, IsString, IsInteger, IsPositiveNumber,
IsNegativeNumber, Complex

IsList — test for a list

(Yacas internal)

Calling format:

IsList(expr)

Parameters:

expr – expression to test

Description:

This function tests whether “expr” is a list. A list is a sequence
between curly braces, e.g. {2, 3, 5}.

Examples:

In> IsList({2,3,5});

Out> True;

In> IsList(2+3+5);

Out> False;

See also: IsFunction

96

IsNumericList — test for a list of
numbers

(standard library)

Calling format:

IsNumericList({list})

Parameters:

{list} – a list

Description:

Returns True when called on a list of numbers or expressions
that evaluate to numbers using N(). Returns False otherwise.

See also: N, IsNumber

IsBound — test for a bound variable

(Yacas internal)

Calling format:

IsBound(var)

Parameters:

var – variable to test

Description:

This function tests whether the variable “var” is bound, i.e.
whether it has been assigned a value. The argument “var” is
not evaluated.

Examples:

In> IsBound(x);

Out> False;

In> x := 5;

Out> 5;

In> IsBound(x);

Out> True;

See also: IsAtom

IsBoolean — test for a Boolean value

(standard library)

Calling format:

IsBoolean(expression)

Parameters:

expression – an expression

Description:

IsBoolean returns True if the argument is of a boolean type.
This means it has to be either True, False, or an expression
involving functions that return a boolean result, e.g. =, >, <, >=,
<=, !=, And, Not, Or.

Examples:

In> IsBoolean(a)

Out> False;

In> IsBoolean(True)

Out> True;

In> IsBoolean(a And b)

Out> True;

See also: True, False

IsNegativeNumber — test for a nega-
tive number

(standard library)

Calling format:

IsNegativeNumber(n)

Parameters:

n – number to test

Description:

IsNegativeNumber(n) evaluates to True if n is (strictly) nega-
tive, i.e. if n < 0. If n is not a number, the functions return
False.

Examples:

In> IsNegativeNumber(6);

Out> False;

In> IsNegativeNumber(-2.5);

Out> True;

See also: IsNumber, IsPositiveNumber, IsNotZero,
IsNegativeInteger, IsNegativeReal

IsNegativeInteger — test for a neg-
ative integer

(standard library)

Calling format:

IsNegativeInteger(n)

Parameters:

n – integer to test

Description:

This function tests whether the integer n is (strictly) negative.
The negative integers are -1, -2, -3, -4, -5, etc. If n is not a
integer, the function returns False.

Examples:

In> IsNegativeInteger(31);

Out> False;

In> IsNegativeInteger(-2);

Out> True;

See also: IsPositiveInteger, IsNonZeroInteger,
IsNegativeNumber

97

IsPositiveNumber — test for a posi-
tive number

(standard library)

Calling format:

IsPositiveNumber(n)

Parameters:

n – number to test

Description:

IsPositiveNumber(n) evaluates to True if n is (strictly) posi-
tive, i.e. if n > 0. If n is not a number the function returns
False.

Examples:

In> IsPositiveNumber(6);

Out> True;

In> IsPositiveNumber(-2.5);

Out> False;

See also: IsNumber, IsNegativeNumber, IsNotZero,
IsPositiveInteger, IsPositiveReal

IsPositiveInteger — test for a posi-
tive integer

(standard library)

Calling format:

IsPositiveInteger(n)

Parameters:

n – integer to test

Description:

This function tests whether the integer n is (strictly) positive.
The positive integers are 1, 2, 3, 4, 5, etc. If n is not a integer,
the function returns False.

Examples:

In> IsPositiveInteger(31);

Out> True;

In> IsPositiveInteger(-2);

Out> False;

See also: IsNegativeInteger, IsNonZeroInteger,
IsPositiveNumber

IsNotZero — test for a nonzero num-
ber

(standard library)

Calling format:

IsNotZero(n)

Parameters:

n – number to test

Description:

IsNotZero(n) evaluates to True if n is not zero. In case n is not
a number, the function returns False.

Examples:

In> IsNotZero(3.25);

Out> True;

In> IsNotZero(0);

Out> False;

See also: IsNumber, IsPositiveNumber, IsNegativeNumber,
IsNonZeroInteger

IsNonZeroInteger — test for a
nonzero integer

(standard library)

Calling format:

IsNonZeroInteger(n)

Parameters:

n – integer to test

Description:

This function tests whether the integer n is not zero. If n is not
an integer, the result is False.

Examples:

In> IsNonZeroInteger(0)

Out> False;

In> IsNonZeroInteger(-2)

Out> True;

See also: IsPositiveInteger, IsNegativeInteger,
IsNotZero

IsInfinity — test for an infinity

(standard library)

Calling format:

IsInfinity(expr)

Parameters:

expr – expression to test

98

Description:

This function tests whether expr is an infinity. This is only the
case if expr is either Infinity or -Infinity.

Examples:

In> IsInfinity(10^1000);

Out> False;

In> IsInfinity(-Infinity);

Out> True;

See also: Integer

IsPositiveReal — test for a numeri-
cally positive value

(standard library)

Calling format:

IsPositiveReal(expr)

Parameters:

expr – expression to test

Description:

This function tries to approximate “expr” numerically. It re-
turns True if this approximation is positive. In case no approx-
imation can be found, the function returns False. Note that
round-off errors may cause incorrect results.

Examples:

In> IsPositiveReal(Sin(1)-3/4);

Out> True;

In> IsPositiveReal(Sin(1)-6/7);

Out> False;

In> IsPositiveReal(Exp(x));

Out> False;

The last result is because Exp(x) cannot be numerically ap-
proximated if x is not known. Hence Yacas can not determine
the sign of this expression.

See also: IsNegativeReal, IsPositiveNumber, N

IsNegativeReal — test for a numeri-
cally negative value

(standard library)

Calling format:

IsNegativeReal(expr)

Parameters:

expr – expression to test

Description:

This function tries to approximate expr numerically. It returns
True if this approximation is negative. In case no approximation
can be found, the function returns False. Note that round-off
errors may cause incorrect results.

Examples:

In> IsNegativeReal(Sin(1)-3/4);

Out> False;

In> IsNegativeReal(Sin(1)-6/7);

Out> True;

In> IsNegativeReal(Exp(x));

Out> False;

The last result is because Exp(x) cannot be numerically ap-
proximated if x is not known. Hence Yacas can not determine
the sign of this expression.

See also: IsPositiveReal, IsNegativeNumber, N

IsConstant — test for a constant

(standard library)

Calling format:

IsConstant(expr)

Parameters:

expr – some expression

Description:

IsConstant returns True if the expression is some constant or a
function with constant arguments. It does this by checking that
no variables are referenced in the expression. Pi is considered a
constant.

Examples:

In> IsConstant(Cos(x))

Out> False;

In> IsConstant(Cos(2))

Out> True;

In> IsConstant(Cos(2+x))

Out> False;

See also: IsNumber, IsInteger, VarList

IsGaussianInteger — test for a
Gaussian integer

(standard library)

Calling format:

IsGaussianInteger(z)

Parameters:

z – a complex or real number

Description:

99

This function returns True if the argument is a Gaussian integer
and False otherwise. A Gaussian integer is a generalization of
integers into the complex plane. A complex number a+ bı is a
Gaussian integer if and only if a and b are integers.

Examples:

In> IsGaussianInteger(5)

Out> True;

In> IsGaussianInteger(5+6*I)

Out> True;

In> IsGaussianInteger(1+2.5*I)

Out> False;

See also: IsGaussianUnit, IsGaussianPrime

MatchLinear — match an expression
to a polynomial of degree one in a
variable

(standard library)

Calling format:

MatchLinear(x,expr)

Parameters:

x – variable to express the univariate polynomial in
expr – expression to match

Description:

MatchLinear tries to match an expression to a linear (degree
less than two) polynomial. The function returns True if it could
match, and it stores the resulting coefficients in the variables
“a” and ”b” as a side effect. The function calling this predi-
cate should declare local variables “a” and ”b” for this purpose.
MatchLinear tries to match to constant coefficients which don’t
depend on the variable passed in, trying to find a form “a*x+b”
with “a” and ”b” not depending on x if x is given as the variable.

Examples:

In> MatchLinear(x,(R+1)*x+(T-1))

Out> True;

In> {a,b};

Out> {R+1,T-1};

In> MatchLinear(x,Sin(x)*x+(T-1))

Out> False;

See also: Integrate

HasExpr — check for expression con-
taining a subexpression

HasExprArith — check for expression
containing a subexpression

HasExprSome — check for expression
containing a subexpression

(standard library)

Calling format:

HasExpr(expr, x)

HasExprArith(expr, x)

HasExprSome(expr, x, list)

Parameters:

expr – an expression
x – a subexpression to be found
list – list of function atoms to be considered ”transparent”

Description:

The command HasExpr returns True if the expression expr con-
tains a literal subexpression x. The expression is recursively
traversed.

The command HasExprSome does the same, except it only
looks at arguments of a given list of functions. All other func-
tions become ”opaque” (as if they do not contain anything).

HasExprArith is defined through HasExprSome to look only
at arithmetic operations +, -, *, /.

Note that since the operators “+” and ”-” are prefix as well
as infix operators, it is currently required to use Atom("+") to
obtain the unevaluated atom ”+”.

Examples:

In> HasExpr(x+y*Cos(Ln(z)/z), z)

Out> True;

In> HasExpr(x+y*Cos(Ln(z)/z), Ln(z))

Out> True;

In> HasExpr(x+y*Cos(Ln(z)/z), z/Ln(z))

Out> False;

In> HasExprArith(x+y*Cos(Ln(x)/x), z)

Out> False;

In> HasExprSome({a+b*2,c/d},c/d,{List})

Out> True;

In> HasExprSome({a+b*2,c/d},c,{List})

Out> False;

See also: FuncList, VarList, HasFunc

HasFunc — check for expression con-
taining a function

HasFuncArith — check for expression
containing a function

HasFuncSome — check for expression
containing a function

(standard library)

Calling format:

HasFunc(expr, func)

HasFuncArith(expr, func)

HasFuncSome(expr, func, list)

Parameters:

expr – an expression
func – a function atom to be found
list – list of function atoms to be considered ”transparent”

100

Description:

The command HasFunc returns True if the expression expr con-
tains a function func. The expression is recursively traversed.

The command HasFuncSome does the same, except it only
looks at arguments of a given list of functions. Arguments of
all other functions become ”opaque” (as if they do not contain
anything).

HasFuncArith is defined through HasFuncSome to look only
at arithmetic operations +, -, *, /.

Note that since the operators “+” and ”-” are prefix as well
as infix operators, it is currently required to use Atom("+") to
obtain the unevaluated atom ”+”.

Examples:

In> HasFunc(x+y*Cos(Ln(z)/z), Ln)

Out> True;

In> HasFunc(x+y*Cos(Ln(z)/z), Sin)

Out> False;

In> HasFuncArith(x+y*Cos(Ln(x)/x), Cos)

Out> True;

In> HasFuncArith(x+y*Cos(Ln(x)/x), Ln)

Out> False;

In> HasFuncSome({a+b*2,c/d},/,{List})

Out> True;

In> HasFuncSome({a+b*2,c/d},*,{List})

Out> False;

See also: FuncList, VarList, HasExpr

101

Chapter 25

Yacas-specific constants

% — previous result

(Yacas internal)

Calling format:

%

Description:

% evaluates to the previous result on the command line. % is
a global variable that is bound to the previous result from the
command line. Using % will evaluate the previous result. (This
uses the functionality offered by the SetGlobalLazyVariable

command).
Typical examples are Simplify(%) and PrettyForm(%) to

simplify and show the result in a nice form respectively.

Examples:

In> Taylor(x,0,5)Sin(x)

Out> x-x^3/6+x^5/120;

In> PrettyForm(%)

3 5

x x

x - -- + ---

6 120

See also: SetGlobalLazyVariable

True — boolean constant represent-
ing true

False — boolean constant represent-
ing false

(Yacas internal)

Calling format:

True

False

Description:

True and False are typically a result of boolean expressions
such as 2 < 3 or True And False.

See also: And, Or, Not

EndOfFile — end-of-file marker

(Yacas internal)

Calling format:

EndOfFile

Description:

End of file marker when reading from file. If a file contains the
expression EndOfFile; the operation will stop reading the file
at that point.

102

Chapter 26

Mathematical constants

Infinity — constant representing
mathematical infinity

(standard library)

Calling format:

Infinity

Description:

Infinity represents infinitely large values. It can be the result of
certain calculations.

Note that for most analytic functions Yacas understands
Infinity as a positive number. Thus Infinity*2 will return
Infinity, and a < Infinity will evaluate to True.

Examples:

In> 2*Infinity

Out> Infinity;

In> 2<Infinity

Out> True;

Pi — mathematical constant, π

(standard library)

Calling format:

Pi

Description:

Pi symbolically represents the exact value of π. When the N()

function is used, Pi evaluates to a numerical value according to
the current precision. It is better to use Pi than N(Pi) except
in numerical calculations, because exact simplification will be
possible.

This is a “cached constant” which is recalculated only when
precision is increased.

Examples:

In> Sin(3*Pi/2)

Out> -1;

In> Pi+1

Out> Pi+1;

In> N(Pi)

Out> 3.14159265358979323846;

See also: Sin, Cos, N, CachedConstant

Undefined — constant signifying an
undefined result

(standard library)

Calling format:

Undefined

Description:

Undefined is a token that can be returned by a function when it
considers its input to be invalid or when no meaningful answer
can be given. The result is then “undefined”.

Most functions also return Undefined when evaluated on it.

Examples:

In> 2*Infinity

Out> Infinity;

In> 0*Infinity

Out> Undefined;

In> Sin(Infinity);

Out> Undefined;

In> Undefined+2*Exp(Undefined);

Out> Undefined;

See also: Infinity

GoldenRatio — the Golden Ratio

(standard library)

Calling format:

GoldenRatio

Description:

These functions compute the “golden ratio”

φ ≈ 1.6180339887 ≈ 1 +
√

5

2
.

The ancient Greeks defined the “golden ratio” as follows: If
one divides a length 1 into two pieces x and 1 − x, such that
the ratio of 1 to x is the same as the ratio of x to 1 − x, then
1
x
≈ 1.618... is the “golden ratio”.
The constant is available symbolically as GoldenRatio or

numerically through N(GoldenRatio). This is a “cached con-
stant” which is recalculated only when precision is increased.
The numerical value of the constant can also be obtained as
N(GoldenRatio).

103

Examples:

In> x:=GoldenRatio - 1

Out> GoldenRatio-1;

In> N(x)

Out> 0.6180339887;

In> N(1/GoldenRatio)

Out> 0.6180339887;

In> V(N(GoldenRatio,20));

CachedConstant: Info: constant GoldenRatio is

being recalculated at precision 20

Out> 1.6180339887498948482;

See also: N, CachedConstant

Catalan — Catalan’s Constant

(standard library)

Calling format:

Catalan

Description:

These functions compute Catalan’s Constant Catalan ≈
0.9159655941.

The constant is available symbolically as Catalan or numeri-
cally through N(Catalan) with N(...) the usual operator used
to try to coerce an expression in to a numeric approximation
of that expression. This is a “cached constant” which is re-
calculated only when precision is increased. The numerical
value of the constant can also be obtained as N(Catalan). The
low-level numerical computations are performed by the routine
CatalanConstNum.

Examples:

In> N(Catalan)

Out> 0.9159655941;

In> DirichletBeta(2)

Out> Catalan;

In> V(N(Catalan,20))

CachedConstant: Info: constant Catalan is

being recalculated at precision 20

Out> 0.91596559417721901505;

See also: N, CachedConstant

gamma — Euler’s constant γ

(standard library)

Calling format:

gamma

Description:

These functions compute Euler’s constant γ ≈ 0.57722...
The constant is available symbolically as gamma or numer-

ically through using the usual function N(...) to get a nu-
meric result, N(gamma). This is a “cached constant” which is
recalculated only when precision is increased. The numerical
value of the constant can also be obtained as N(gamma). The
low-level numerical computations are performed by the routine
GammaConstNum.

Note that Euler’s Gamma function Γ (x) is the capitalized
Gamma in Yacas.

Examples:

In> gamma+Pi

Out> gamma+Pi;

In> N(gamma+Pi)

Out> 3.7188083184;

In> V(N(gamma,20))

CachedConstant: Info: constant gamma is being

recalculated at precision 20

GammaConstNum: Info: used 56 iterations at

working precision 24

Out> 0.57721566490153286061;

See also: Gamma, N, CachedConstant

104

Chapter 27

Variables

:= — assign a variable or a list; de-
fine a function

(standard library)

Calling format:

var := expr

{var1, var2, ...} := {expr1, expr2, ...}

var[i] := expr

fn(arg1, arg2, ...) := expr

Precedence: 10000

Parameters:

var – atom, variable which should be assigned
expr – expression to assign to the variable or body of function
i – index (can be integer or string)
fn – atom, name of a new function to define
arg1, arg2 – atoms, names of arguments of the new function

fn

Description:

The := operator can be used in a number of ways. In all cases,
some sort of assignment or definition takes place.

The first form is the most basic one. It evaluates the expres-
sion on the right-hand side and assigns it to the variable named
on the left-hand side. The left-hand side is not evaluated. The
evaluated expression is also returned.

The second form is a small extension, which allows one to do
multiple assignments. The first entry in the list on the right-
hand side is assigned to the first variable mentioned in the left-
hand side, the second entry on the right-hand side to the second
variable on the left-hand side, etc. The list on the right-hand
side must have at least as many entries as the list on the left-
hand side. Any excess entries are silently ignored. The result of
the expression is the list of values that have been assigned.

The third form allows one to change an entry in the list. If
the index “i” is an integer, the “i”-th entry in the list is changed
to the expression on the right-hand side. It is assumed that the
length of the list is at least “i”. If the index “i” is a string,
then “var” is considered to be an associative list (sometimes
called hash table), and the key “i” is paired with the value
“exp”. In both cases, the right-hand side is evaluated before
the assignment and the result of the assignment is True.

The last form defines a function. For example, the assign-
ment fn(x) := x2̂ removes any rules previously associated with
fn(x) and defines the rule fn(x) <-- x2̂. Note that the left-
hand side may take a different form if fn is defined to be a
prefix, infix or bodied function. This case is special since the

right-hand side is not evaluated immediately, but only when the
function fn is used. If this takes time, it may be better to force
an immediate evaluation with Eval (see the last example). If
the expression on the right hand side begins with Eval(), then
it will be evaluated before defining the new function.

A variant of the function definition can be used to make a
function accepting a variable number of arguments. The last
argument

Examples:

A simple assignment:

In> a := Sin(x) + 3;

Out> Sin(x)+3;

In> a;

Out> Sin(x)+3;

Multiple assignments:

In> {a,b,c} := {1,2,3};

Out> {1,2,3};

In> a;

Out> 1;

In> b+c;

Out> 5;

Assignment to a list:

In> xs := { 1,2,3,4,5 };

Out> {1,2,3,4,5};

In> xs[3] := 15;

Out> True;

In> xs;

Out> {1,2,15,4,5};

Building an associative list:

In> alist := {};

Out> {};

In> alist["cherry"] := "red";

Out> True;

In> alist["banana"] := "yellow";

Out> True;

In> alist["cherry"];

Out> "red";

In> alist;

Out> {{"banana","yellow"},{"cherry","red"}};

Defining a function:

In> f(x) := x^2;

Out> True;

In> f(3);

Out> 9;

In> f(Sin(a));

Out> Sin(a)^2;

105

Defining a function with variable number of arguments:

In> f(x, ...) := If(IsList(x),Sum(x),x);

Out> True;

In> f(2);

Out> 2;

In> f(1,2,3);

Out> 6;

Defining a new infix operator:

In> Infix("*&*",10);

Out> True;

In> x1 *&* x2 := x1/x2 + x2/x1;

Out> True;

In> Sin(a) *&* Cos(a);

Out> Tan(1)+Cos(1)/Sin(1);

In> Clear(a);

Out> True;

In> Sin(a) *&* Exp(a);

Out> Sin(a)/Exp(a)+Exp(a)/Sin(a);

In the following example, it may take some time to compute
the Taylor expansion. This has to be done every time the func-
tion f is called.

In> f(a) := Taylor(x,0,25) Sin(x);

Out> True;

In> f(1);

Out> x-x^3/6+x^5/120-x^7/5040+x^9/362880-

x^11/39916800+x^13/6227020800-x^15/

1307674368000+x^17/355687428096000-x^19/

121645100408832000+x^21/51090942171709440000

-x^23/25852016738884976640000+x^25

/15511210043330985984000000;

In> f(2);

Out> x-x^3/6+x^5/120-x^7/5040+x^9/362880-

x^11/39916800+x^13/6227020800-x^15

/1307674368000+x^17/355687428096000-x^19/

121645100408832000+x^21/51090942171709440000

-x^23/25852016738884976640000+x^25/

15511210043330985984000000;

The remedy is to evaluate the Taylor expansion immediately.
Now the expansion is computed only once.

In> f(a) := Eval(Taylor(x,0,25) Sin(x));

Out> True;

In> f(1);

Out> x-x^3/6+x^5/120-x^7/5040+x^9/362880-

x^11/39916800+x^13/6227020800-x^15/

1307674368000+x^17/355687428096000-x^19/

121645100408832000+x^21/51090942171709440000

-x^23/25852016738884976640000+x^25

/15511210043330985984000000;

In> f(2);

Out> x-x^3/6+x^5/120-x^7/5040+x^9/362880-

x^11/39916800+x^13/6227020800-x^15

/1307674368000+x^17/355687428096000-x^19/

121645100408832000+x^21/51090942171709440000

-x^23/25852016738884976640000+x^25/

15511210043330985984000000;

See also: Set, Clear, [], Rule, Infix, Eval, Function

Set — assignment

(Yacas internal)

Calling format:

Set(var, exp)

Parameters:

var – variable which should be assigned

exp – expression to assign to the variable

Description:

The expression “exp” is evaluated and assigned it to the variable
named “var”. The first argument is not evaluated. The value
True is returned.

The statement Set(var, exp) is equivalent to var := exp,
but the := operator has more uses, e.g. changing individual
entries in a list.

Examples:

In> Set(a, Sin(x)+3);

Out> True;

In> a;

Out> Sin(x)+3;

See also: Clear, :=

Clear — undo an assignment

(Yacas internal)

Calling format:

Clear(var, ...)

Parameters:

var – name of variable to be cleared

Description:

All assignments made to the variables listed as arguments are
undone. From now on, all these variables remain unevaluated
(until a subsequent assignment is made). The result of the ex-
pression is True.

Examples:

In> a := 5;

Out> 5;

In> a^2;

Out> 25;

In> Clear(a);

Out> True;

In> a^2;

Out> a^2;

See also: Set, :=

106

Local — declare new local variables

(Yacas internal)

Calling format:

Local(var, ...)

Parameters:

var – name of variable to be declared as local

Description:

All variables in the argument list are declared as local variables.
The arguments are not evaluated. The value True is returned.

By default, all variables in Yacas are global. This means that
the variable has the same value everywhere. But sometimes it
is useful to have a private copy of some variable, either to pre-
vent the outside world from changing it or to prevent accidental
changes to the outside world. This can be achieved by declar-
ing the variable local. Now only expressions within the Prog

block (or its syntactic equivalent, the [] block) can access and
change it. Functions called within this block cannot access the
local copy unless this is specifically allowed with UnFence.

Examples:

In> a := 3;

Out> 3;

In> [a := 4; a;];

Out> 4;

In> a;

Out> 4;

In> [Local(a); a := 5; a;];

Out> 5;

In> a;

Out> 4;

In the first block, a is not declared local and hence defaults
to be a global variable. Indeed, changing the variable inside the
block also changes the value of a outside the block. However,
in the second block a is defined to be local and now the value
outside the block stays the same, even though a is assigned the
value 5 inside the block.

See also: LocalSymbols, Prog, [], UnFence

++ — increment variable

(standard library)

Calling format:

var++

Parameters:

var – variable to increment

Description:

The variable with name “var” is incremented, i.e. the number
1 is added to it. The expression x++ is equivalent to the assign-
ment x := x + 1, except that the assignment returns the new
value of x while x++ always returns true. In this respect, Yacas’
++ differs from the corresponding operator in the programming
language C.

Examples:

In> x := 5;

Out> 5;

In> x++;

Out> True;

In> x;

Out> 6;

See also: --, :=

-- — decrement variable

(standard library)

Calling format:

var--

Parameters:

var – variable to decrement

Description:

The variable with name “var” is decremented, i.e. the number
1 is subtracted from it. The expression x-- is equivalent to
the assignment x := x - 1, except that the assignment returns
the new value of x while x-- always returns true. In this re-
spect, Yacas’ -- differs from the corresponding operator in the
programming language C.

Examples:

In> x := 5;

Out> 5;

In> x--;

Out> True;

In> x;

Out> 4;

See also: ++, :=

Object — create an incomplete type

(standard library)

Calling format:

Object("pred", exp)

Parameters:

pred – name of the predicate to apply
exp – expression on which ”pred” should be applied

Description:

This function returns “obj” as soon as “pred” returns True when
applied on ”obj”. This is used to declare so-called incomplete
types.

Examples:

In> a := Object("IsNumber", x);

Out> Object("IsNumber",x);

In> Eval(a);

Out> Object("IsNumber",x);

In> x := 5;

Out> 5;

In> Eval(a);

Out> 5;

See also: IsNonObject

107

SetGlobalLazyVariable — global
variable is to be evaluated lazily

(Yacas internal)

Calling format:

SetGlobalLazyVariable(var,value)

Parameters:

var – variable (held argument)
value – value to be set to (evaluated before it is assigned)

Description:

SetGlobalLazyVariable enforces that a global variable will
re-evaluate when used. This functionality doesn’t survive if
Clear(var) is called afterwards.

Places where this is used include the global variables % and
I.

The use of lazy in the name stems from the concept of lazy
evaluation. The object the global variable is bound to will only
be evaluated when called. The SetGlobalLazyVariable prop-
erty only holds once: after that, the result of evaluation is stored
in the global variable, and it won’t be reevaluated again:

In> SetGlobalLazyVariable(a,Hold(Taylor(x,0,30)Sin(x)))

Out> True

Then the first time you call a it evaluates Taylor(...) and
assigns the result to a. The next time you call a it immediately
returns the result. SetGlobalLazyVariable is called for % each
time % changes.

The following example demonstrates the sequence of execu-
tion:

In> SetGlobalLazyVariable(test,Hold(Write("hello")))

Out> True

The text “hello” is not written out to screen yet. However,
evaluating the variable test forces the expression to be evalu-
ated:

In> test

"hello"Out> True

Examples:

In> Set(a,Hold(2+3))

Out> True

In> a

Out> 2+3

In> SetGlobalLazyVariable(a,Hold(2+3))

Out> True

In> a

Out> 5

See also: Set, Clear, Local, %, I

UniqueConstant — create a unique
identifier

(standard library)

Calling format:

UniqueConstant()

Description:

This function returns a unique constant atom each time you call
it. The atom starts with a C character, and a unique number is
appended to it.

Examples:

In> UniqueConstant()

Out> C9

In> UniqueConstant()

Out> C10

See also: LocalSymbols

LocalSymbols — create unique local
symbols with given prefix

(standard library)

Calling format:

LocalSymbols(var1, var2, ...) body

Parameters:

var1, var2, ... – atoms, symbols to be made local
body – expression to execute

Description:

Given the symbols passed as the first arguments to LocalSym-
bols a set of local symbols will be created, and creates unique
ones for them, typically of the form $<symbol><number>, where
symbol was the symbol entered by the user, and number is a
unique number. This scheme was used to ensure that a gener-
ated symbol can not accidentally be entered by a user.

This is useful in cases where a guaranteed free variable is
needed, for example, in the macro-like functions (For, While,
etc.).

Examples:

In> LocalSymbols(a,b)a+b

Out> $a6+ $b6;

See also: UniqueConstant

108

Chapter 28

Input/output and plotting

This chapter contains commands to use for input and output
and plotting. All output commands write to the same destina-
tion stream, called the “current output”. This is initially the
screen, but may be redirected by some commands. Similarly,
most input commands read from the “current input” stream,
which can also be redirected. The exception to this rule are the
commands for reading script files, which simply read a specified
file.

FullForm — print an expression in
LISP-format

(Yacas internal)

Calling format:

FullForm(expr)

Parameters:

expr – expression to be printed in LISP-format

Description:

Evaluates “expr”, and prints it in LISP-format on the current
output. It is followed by a newline. The evaluated expression is
also returned.

This can be useful if you want to study the internal represen-
tation of a certain expression.

Examples:

In> FullForm(a+b+c);

(+ (+ a b)c)

Out> a+b+c;

In> FullForm(2*I*b^2);

(* (Complex 0 2)(^ b 2))

Out> Complex(0,2)*b^2;

The first example shows how the expression a+b+c is inter-
nally represented. In the second example, 2*I is first evaluated
to Complex(0,2) before the expression is printed.

See also: LispRead, Listify, Unlist

Echo — high-level printing routine

(standard library)

Calling format:

Echo(item)

Echo(list)

Echo(item,item,item,...)

Parameters:

item – the item to be printed
list – a list of items to be printed

Description:

If passed a single item, Echo will evaluate it and print it to the
current output, followed by a newline. If item is a string, it is
printed without quotation marks.

If there is one argument, and it is a list, Echo will print all the
entries in the list subsequently to the current output, followed by
a newline. Any strings in the list are printed without quotation
marks. All other entries are followed by a space.

Echo can be called with a variable number of arguments, they
will all be printed, followed by a newline.

Echo always returns True.

Examples:

In> Echo(5+3);

8

Out> True;

In> Echo({"The square of two is ", 2*2});

The square of two is 4

Out> True;

In> Echo("The square of two is ", 2*2);

The square of two is 4

Out> True;

Note that one must use the second calling format if one wishes
to print a list:

In> Echo({a,b,c});

a b c

Out> True;

In> Echo({{a,b,c}});

{a,b,c}

Out> True;

See also: PrettyForm, Write, WriteString, RuleBaseListed

PrettyForm — print an expression
nicely with ASCII art

(standard library)

Calling format:

109

PrettyForm(expr)

Parameters:

expr – an expression

Description:

PrettyForm renders an expression in a nicer way, using ascii art.
This is generally useful when the result of a calculation is more
complex than a simple number.

Examples:

In> Taylor(x,0,9)Sin(x)

Out> x-x^3/6+x^5/120-x^7/5040+x^9/362880;

In> PrettyForm(%)

3 5 7 9

x x x x

x - -- + --- - ---- + ------

6 120 5040 362880

Out> True;

See also: EvalFormula, PrettyPrinter’Set

EvalFormula — print an evaluation
nicely with ASCII art

(standard library)

Calling format:

EvalFormula(expr)

Parameters:

expr – an expression

Description:

Show an evaluation in a nice way, using PrettyPrinter’Set to
show ’input = output’.

Examples:

In> EvalFormula(Taylor(x,0,7)Sin(x))

3 5

x x

Taylor(x , 0 , 5 , Sin(x)) = x - -- + ---

6 120

See also: PrettyForm

TeXForm — export expressions to
LATEX

(standard library)

Calling format:

TeXForm(expr)

Parameters:

expr – an expression to be exported

Description:

TeXForm returns a string containing a LATEX representation of
the Yacas expression expr. Currently the exporter handles most
expression types but not all.

Example:

In> TeXForm(Sin(a1)+2*Cos(b1))

Out> "$\sin a_{1} + 2 \cos b_{1}$";

See also: PrettyForm, CForm

CForm — export expression to C++
code

(standard library)

Calling format:

CForm(expr)

Parameters:

expr – expression to be exported

Description:

CForm returns a string containing C++ code that attempts to
implement the Yacas expression expr. Currently the exporter
handles most expression types but not all.

Example:

In> CForm(Sin(a1)+2*Cos(b1));

Out> "sin(a1) + 2 * cos(b1)";

See also: PrettyForm, TeXForm, IsCFormable

IsCFormable — check possibility to
export expression to C++ code

(standard library)

Calling format:

IsCFormable(expr)

IsCFormable(expr, funclist)

Parameters:

expr – expression to be exported (this argument is not evalu-
ated)

funclist – list of ”allowed” function atoms

Description:

110

IsCFormable returns True if the Yacas expression expr can be
exported into C++ code. This is a check whether the C++
exporter CForm can be safely used on the expression.

A Yacas expression is considered exportable if it contains only
functions that can be translated into C++ (e.g. UnList cannot
be exported). All variables and constants are considered ex-
portable.

The verbose option prints names of functions that are not
exportable.

The second calling format of IsCFormable can be used to
”allow” certain function names that will be available in the C++
code.

Examples:

In> IsCFormable(Sin(a1)+2*Cos(b1))

Out> True;

In> V(IsCFormable(1+func123(b1)))

IsCFormable: Info: unexportable function(s):

func123

Out> False;

This returned False because the function func123 is not avail-
able in C++. We can explicitly allow this function and then
the expression will be considered exportable:

In> IsCFormable(1+func123(b1), {func123})

Out> True;

See also: CForm, V

Write — low-level printing routine

(Yacas internal)

Calling format:

Write(expr, ...)

Parameters:

expr – expression to be printed

Description:

The expression “expr” is evaluated and written to the current
output. Note that Write accept an arbitrary number of argu-
ments, all of which are written to the current output (see second
example). Write always returns True.

Examples:

In> Write(1);

1Out> True;

In> Write(1,2);

1 2Out> True;

Write does not write a newline, so the Out> prompt immedi-
ately follows the output of Write.

See also: Echo, WriteString

WriteString — low-level printing
routine for strings

(Yacas internal)

Calling format:

WriteString(string)

Parameters:

string – the string to be printed

Description:

The expression “string” is evaluated and written to the current
output without quotation marks. The argument should be a
string. WriteString always returns True.

Examples:

In> Write("Hello, world!");

"Hello, world!"Out> True;

In> WriteString("Hello, world!");

Hello, world!Out> True;

This example clearly shows the difference between Write and
WriteString. Note that Write and WriteString do not write a
newline, so the Out> prompt immediately follows the output.

See also: Echo, Write

Space — print one or more spaces

(standard library)

Calling format:

Space()

Space(nr)

Parameters:

nr – the number of spaces to print

Description:

The command Space() prints one space on the current output.
The second form prints nr spaces on the current output. The
result is always True.

Examples:

In> Space(5);

Out> True;

See also: Echo, Write, NewLine

111

NewLine — print one or more newline
characters

(standard library)

Calling format:

NewLine()

NewLine(nr)

Parameters:

nr – the number of newline characters to print

Description:

The command NewLine() prints one newline character on the
current output. The second form prints “nr” newlines on the
current output. The result is always True.

Examples:

In> NewLine();

Out> True;

See also: Echo, Write, Space

FromFile — connect current input to
a file

(Yacas internal)

Calling format:

FromFile(name) body

Parameters:

name - string, the name of the file to read

body - expression to be evaluated

Description:

The current input is connected to the file “name”. Then the
expression “body” is evaluated. If some functions in “body”
try to read from current input, they will now read from the file
“name”. Finally, the file is closed and the result of evaluating
“body” is returned.

Examples:

Suppose that the file foo contains

2 + 5;

Then we can have the following dialogue:

In> FromFile("foo") res := Read();

Out> 2+5;

In> FromFile("foo") res := ReadToken();

Out> 2;

See also: ToFile, FromString, Read, ReadToken

FromString — connect current input
to a string

(Yacas internal)

Calling format:

FromString(str) body;

Parameters:

str – a string containing the text to parse
body – expression to be evaluated

Description:

The commands in “body” are executed, but everything that is
read from the current input is now read from the string “str”.
The result of “body” is returned.

Examples:

In> FromString("2+5; this is never read") \

res := Read();

Out> 2+5;

In> FromString("2+5; this is never read") \

res := Eval(Read());

Out> 7;

See also: ToString, FromFile, Read, ReadToken

ToFile — connect current output to
a file

(Yacas internal)

Calling format:

ToFile(name) body

Parameters:

name – string, the name of the file to write the result to
body – expression to be evaluated

Description:

The current output is connected to the file “name”. Then
the expression “body” is evaluated. Everything that the com-
mands in “body” print to the current output, ends up in the file
“name”. Finally, the file is closed and the result of evaluating
“body” is returned.

If the file is opened again, the old contents will be overwritten.
This is a limitation of ToFile: one cannot append to a file that
has already been created.

Examples:

Here is how one can create a file with C code to evaluate an
expression:

In> ToFile("expr1.c") WriteString(

CForm(Sqrt(x-y)*Sin(x)));

Out> True;

The file expr1.c was created in the current working directory
and it contains the line

112

sqrt(x-y)*sin(x)

As another example, take a look at the following command:

In> [Echo("Result:"); \

PrettyForm(Taylor(x,0,9) Sin(x));];

Result:

3 5 7 9

x x x x

x - -- + --- - ---- + ------

6 120 5040 362880

Out> True;

Now suppose one wants to send the output of this command
to a file. This can be achieved as follows:

In> ToFile("out") [Echo("Result:"); \

PrettyForm(Taylor(x,0,9) Sin(x));];

Out> True;

After this command the file out contains:

Result:

3 5 7 9

x x x x

x - -- + --- - ---- + ------

6 120 5040 362880

See also: FromFile, ToString, Echo, Write, WriteString,
PrettyForm, Taylor

ToString — connect current output
to a string

(Yacas internal)

Calling format:

ToString() body

Parameters:

body – expression to be evaluated

Description:

The commands in “body” are executed. Everything that is
printed on the current output, by Echo for instance, is collected
in a string and this string is returned.

Examples:

In> str := ToString() [WriteString(\

"The square of 8 is "); Write(8^2);];

Out> "The square of 8 is 64";

See also: FromFile, ToString, Echo, Write, WriteString

Read — read an expression from cur-
rent input

(Yacas internal)

Calling format:

Read()

Description:

Read an expression from the current input, and return it un-
evaluated. When the end of an input file is encountered, the
token atom EndOfFile is returned.

Examples:

In> FromString("2+5;") Read();

Out> 2+5;

In> FromString("") Read();

Out> EndOfFile;

See also: FromFile, FromString, LispRead, ReadToken, Write

ToStdout — select initial output
stream for output

(Yacas internal)

Calling format:

ToStdout() body

Parameters:

body – expression to be evaluated

Description:

When using ToString or ToFile, it might happen that some-
thing needs to be written to the standard default initial out-
put (typically the screen). ToStdout can be used to select this
stream.

Example:

In> ToString()[Echo("aaaa");ToStdout()Echo("bbbb");];

bbbb

Out> "aaaa

"

See also: ToString, ToFile

ReadCmdLineString — read an expres-
sion from command line and return
in string

(Yacas internal)

Calling format:

ReadCmdLineString(prompt)

Parameters:

113

prompt – string representing the prompt shown on screen

Description:

This function allows for interactive input similar to the com-
mand line. When using this function, the history from the com-
mand line is also available.

The result is returned in a string, so it still needs to be parsed.
This function will typically be used in situations where one

wants a custom read-eval-print loop.

Examples:

The following defines a function that when invoked keeps asking
for an expression (the read step), and then takes the derivative
of it (the eval step) and then uses PrettyForm to display the
result (the print step).

In> ReEvPr() := \

In> While(True) [\

In> PrettyForm(Deriv(x) \

In> FromString(ReadCmdLineString("Deriv> "):";")Read()); \

In>];

Out> True;

Then one can invoke the command, from which the following
interaction might follow:

In> ReEvPr()

Deriv> Sin(a^2*x/b)

/ 2 \

| a * x | 2

Cos| ------ | * a * b

\ b /

2

b

Deriv> Sin(x)

Cos(x)

Deriv>

See also: Read, LispRead, LispReadListed

LispRead — read expressions in LISP
syntax

LispReadListed — read expressions
in LISP syntax

(Yacas internal)

Calling format:

LispRead()

LispReadListed()

Description:

The function LispRead reads an expression in the LISP syn-
tax from the current input, and returns it unevaluated. When
the end of an input file is encountered, the special token atom
EndOfFile is returned.

The Yacas expression a+b is written in the LISP syntax as (+
a b). The advantage of this syntax is that it is less ambiguous
than the infix operator grammar that Yacas uses by default.

The function LispReadListed reads a LISP expression and
returns it in a list, instead of the form usual to Yacas (expres-
sions). The result can be thought of as applying Listify to
LispRead. The function LispReadListed is more useful for read-
ing arbitrary LISP expressions, because the first object in a list
can be itself a list (this is never the case for Yacas expressions
where the first object in a list is always a function atom).

Examples:

In> FromString("(+ a b)") LispRead();

Out> a+b;

In> FromString("(List (Sin x) (- (Cos x)))") \

LispRead();

Out> {Sin(x),-Cos(x)};

In> FromString("(+ a b)")LispRead()

Out> a+b;

In> FromString("(+ a b)")LispReadListed()

Out> {+,a,b};

See also: FromFile, FromString, Read, ReadToken, FullForm

ReadToken — read a token from cur-
rent input

(Yacas internal)

Calling format:

ReadToken()

Description:

Read a token from the current input, and return it unevaluated.
The returned object is a Yacas atom (not a string). When the
end of an input file is encountered, the token atom EndOfFile

is returned.
A token is for computer languages what a word is for human

languages: it is the smallest unit in which a command can be
divided, so that the semantics (that is the meaning) of the com-
mand is in some sense a combination of the semantics of the
tokens. Hence a := foo consists of three tokens, namely a, :=,
and foo.

The parsing of the string depends on the syntax of the lan-
guage. The part of the kernel that does the parsing is the “tok-
enizer”. Yacas can parse its own syntax (the default tokenizer)
or it can be instructed to parse XML or C++ syntax using the
directives DefaultTokenizer or XmlTokenizer. Setting a tok-
enizer is a global action that affects all ReadToken calls.

Examples:

In> FromString("a := Sin(x)") While \

((tok := ReadToken()) != EndOfFile) \

Echo(tok);

a

:=

Sin

(

x

)

Out> True;

114

We can read some junk too:

In> FromString("-$3")ReadToken();

Out> -$;

The result is an atom with the string representation -$. Yacas
assumes that -$ is an operator symbol yet to be defined. The
“3” will be in the next token. (The results will be different if a
non-default tokenizer is selected.)

See also: FromFile, FromString, Read, LispRead,
DefaultTokenizer

Load — evaluate all expressions in a
file

(Yacas internal)

Calling format:

Load(name)

Parameters:

name – string, name of the file to load

Description:

The file “name” is opened. All expressions in the file are read
and evaluated. Load always returns true.

See also: Use, DefLoad, DefaultDirectory, FindFile

Use — load a file, but not twice

(Yacas internal)

Calling format:

Use(name)

Parameters:

name – string, name of the file to load

Description:

If the file “name” has been loaded before, either by an earlier
call to Use or via the DefLoad mechanism, nothing happens.
Otherwise all expressions in the file are read and evaluated. Use
always returns true.

The purpose of this function is to make sure that the file will
at least have been loaded, but is not loaded twice.

See also: Load, DefLoad, DefaultDirectory

DefLoad — load a .def file

(Yacas internal)

Calling format:

DefLoad(name)

Parameters:

name – string, name of the file (without .def suffix)

Description:

The suffix .def is appended to ”name” and the file with this
name is loaded. It should contain a list of functions, terminated
by a closing brace } (the end-of-list delimiter). This tells the
system to load the file “name” as soon as the user calls one of the
functions named in the file (if not done so already). This allows
for faster startup times, since not all of the rules databases need
to be loaded, just the descriptions on which files to load for
which functions.

See also: Load, Use, DefaultDirectory

FindFile — find a file in the current
path

(Yacas internal)

Calling format:

FindFile(name)

Parameters:

name – string, name of the file or directory to find

Description:

The result of this command is the full path to the file that would
be opened when the command Load(name) would be invoked.
This means that the input directories are subsequently searched
for a file called “name”. If such a file is not found, FindFile
returns an empty string.

FindFile("") returns the name of the default directory (the
first one on the search path).

See also: Load, DefaultDirectory

PatchLoad — execute commands be-
tween <? and ?> in file

(Yacas internal)

Calling format:

PatchLoad(name)

Parameters:

name – string, name of the file to ”patch”

Description:

PatchLoad loads in a file and outputs the contents to the current
output. The file can contain blocks delimited by <? and ?>

(meaning “Yacas Begin” and “Yacas End”). The piece of text
between such delimiters is treated as a separate file with Yacas
instructions, which is then loaded and executed. All output
of write statements in that block will be written to the same
current output.

This is similar to the way PHP works. You can have a static
text file with dynamic content generated by Yacas.

See also: PatchString, Load

115

Nl — the newline character

(standard library)

Calling format:

Nl()

Description:

This function returns a string with one element in it, namely
a newline character. This may be useful for building strings to
send to some output in the end.

Note that the second letter in the name of this command is
a lower case L (from ”line”).

Examples:

In> WriteString("First line" : Nl() : "Second line" : Nl());

First line

Second line

Out> True;

See also: NewLine

V, InVerboseMode — set verbose out-
put mode

(standard library)

Calling format:

V(expression)

InVerboseMode()

Parameters:

expression – expression to be evaluated in verbose mode

Description:

The function V(expression) will evaluate the expression in ver-
bose mode. Various parts of Yacas can show extra information
about the work done while doing a calculation when using V.

In verbose mode, InVerboseMode() will return True, other-
wise it will return False.

Examples:

In> OldSolve({x+2==0},{x})

Out> {{-2}};

In> V(OldSolve({x+2==0},{x}))

Entering OldSolve

From x+2==0 it follows that x = -2

x+2==0 simplifies to True

Leaving OldSolve

Out> {{-2}};

In> InVerboseMode()

Out> False

In> V(InVerboseMode())

Out> True

See also: Echo, N, OldSolve

Plot2D — adaptive two-dimensional
plotting

(standard library)

Calling format:

Plot2D(f(x))

Plot2D(f(x), a:b)

Plot2D(f(x), a:b, option=value)

Plot2D(f(x), a:b, option=value, ...)

Plot2D(list, ...)

Parameters:

f(x) – unevaluated expression containing one variables (func-
tion to be plotted)

list – list of functions to plot
a, b – numbers, plotting range in the x coordinate
option – atom, option name
value – atom, number or string (value of option)

Description:

The routine Plot2D performs adaptive plotting of one or several
functions of one variable in the specified range. The result is
presented as a line given by the equation y = f (x). Several
functions can be plotted at once. Various plotting options can
be specified. Output can be directed to a plotting program (the
default is to use data) to a list of values.

The function parameter f(x) must evaluate to a Yacas ex-
pression containing at most one variable. (The variable does
not have to be called x.) Also, N(f(x)) must evaluate to a real
(not complex) numerical value when given a numerical value
of the argument x. If the function f(x) does not satisfy these
requirements, an error is raised.

Several functions may be specified as a list and they do
not have to depend on the same variable, for example, {f(x),
g(y)}. The functions will be plotted on the same graph using
the same coordinate ranges.

If you have defined a function which accepts a number but
does not accept an undefined variable, Plot2D will fail to plot
it. Use NFunction to overcome this difficulty.

Data files are created in a temporary directory
/tmp/plot.tmp/ unless otherwise requested. File names
and other information is printed if InVerboseMode() returns
True on using V().

The current algorithm uses Newton-Cotes quadratures and
some heuristics for error estimation (see The Yacas book of al-
gorithms, Chapter 3, Section 1). The initial grid of points+1

points is refined between any grid points a, b if the integral∫ b
a
f (x) dx is not approximated to the given precision by the

existing grid.
Default plotting range is -5:5. Range can also be specified

as x= -5:5 (note the mandatory space separating ”=” and ”-”);
currently the variable name x is ignored in this case.

Options are of the form option=value. Currently supported
option names are: “points”, “precision”, “depth”, “output”,
“filename”, “yrange”. Option values are either numbers or spe-
cial unevaluated atoms such as data. If you need to use the
names of these atoms in your script, strings can be used. Sev-
eral option/value pairs may be specified (the function Plot2D

has a variable number of arguments).

• yrange: the range of ordinates to use for plotting, e.g.
yrange=0:20. If no range is specified, the default is usually
to leave the choice to the plotting backend.

116

• points: initial number of points (default 23) – at least that
many points will be plotted. The initial grid of this many
points will be adaptively refined.

• precision: graphing precision (default 10−6). This is in-
terpreted as the relative precision of computing the in-
tegral of f (x) − min (f (x)) using the grid points. For
a smooth, non-oscillating function this value should be
roughly 1/(number of screen pixels in the plot).

• depth: max. refinement depth, logarithmic (default 5) –
means there will be at most 2depth extra points per initial
grid point.

• output: name of the plotting backend. Supported names:
data (default). The data backend will return the data as
a list of pairs such as {{x1,y1}, {x2,y2}, ...}.

• filename: specify name of the created data file. For ex-
ample: filename="data1.txt". The default is the name
"output.data". Note that if several functions are plotted,
the data files will have a number appended to the given
name, for example data.txt1, data.txt2.

Other options may be supported in the future.
The current implementation can deal with a singularity

within the plotting range only if the function f(x) returns
Infinity, -Infinity or Undefined at the singularity. If the
function f(x) generates a numerical error and fails at a sin-
gularity, Plot2D will fail if one of the grid points falls on the
singularity. (All grid points are generated by bisection so in
principle the endpoints and the points parameter could be cho-
sen to avoid numerical singularities.)

*WIN32

See also: V, NFunction, Plot3DS

Plot3DS — three-dimensional (sur-
face) plotting

(standard library)

Calling format:

Plot3DS(f(x,y))

Plot3DS(f(x,y), a:b, c:d)

Plot3DS(f(x,y), a:b, c:d, option=value)

Plot3DS(f(x,y), a:b, c:d, option=value, ...)

Plot3DS(list, ...)

Parameters:

f(x,y) – unevaluated expression containing two variables (func-
tion to be plotted)

list – list of functions to plot
a, b, c, d – numbers, plotting ranges in the x and y coordinates
option – atom, option name
value – atom, number or string (value of option)

Description:

The routine Plot3DS performs adaptive plotting of a function of
two variables in the specified ranges. The result is presented as
a surface given by the equation z = f (x, y). Several functions
can be plotted at once, by giving a list of functions. Various
plotting options can be specified. Output can be directed to a
plotting program (the default is to use data), to a list of values.

The function parameter f(x,y) must evaluate to a Yacas ex-
pression containing at most two variables. (The variables do

not have to be called x and y.) Also, N(f(x,y)) must evaluate
to a real (not complex) numerical value when given numerical
values of the arguments x, y. If the function f(x,y) does not
satisfy these requirements, an error is raised.

Several functions may be specified as a list but they have to
depend on the same symbolic variables, for example, {f(x,y),
g(y,x)}, but not {f(x,y), g(a,b)}. The functions will be plot-
ted on the same graph using the same coordinate ranges.

If you have defined a function which accepts a number but
does not accept an undefined variable, Plot3DS will fail to plot
it. Use NFunction to overcome this difficulty.

Data files are created in a temporary directory
/tmp/plot.tmp/ unless otherwise requested. File names
and other information is printed if InVerboseMode() returns
True on using V().

The current algorithm uses Newton-Cotes cubatures and
some heuristics for error estimation (see The Yacas book of al-
gorithms, Chapter 3, Section 1). The initial rectangular grid
of xpoints+1*ypoints+1 points is refined within any rectangle
where the integral of f (x, y) is not approximated to the given
precision by the existing grid.

Default plotting range is -5:5 in both coordinates. A range
can also be specified with a variable name, e.g. x= -5:5 (note
the mandatory space separating ”=” and ”-”). The variable
name x should be the same as that used in the function f(x,y).
If ranges are not given with variable names, the first variable
encountered in the function f(x,y) is associated with the first
of the two ranges.

Options are of the form option=value. Currently supported
option names are “points”, “xpoints”, “ypoints”, “precision”,
“depth”, “output”, “filename”, “xrange”, “yrange”, “zrange”.
Option values are either numbers or special unevaluated atoms
such as data. If you need to use the names of these atoms in
your script, strings can be used (e.g. output="data"). Several
option/value pairs may be specified (the function Plot3DS has
a variable number of arguments).

• xrange, yrange: optionally override coordinate ranges.
Note that xrange is always the first variable and yrange the
second variable, regardless of the actual variable names.

• zrange: the range of the z axis to use for plotting, e.g.
zrange=0:20. If no range is specified, the default is usually
to leave the choice to the plotting backend. Automatic
choice based on actual values may give visually inadequate
plots if the function has a singularity.

• points, xpoints, ypoints: initial number of points (de-
fault 10 each) – at least that many points will be plotted
in each coordinate. The initial grid of this many points will
be adaptively refined. If points is specified, it serves as a
default for both xpoints and ypoints; this value may be
overridden by xpoints and ypoints values.

• precision: graphing precision (default 0.01). This is in-
terpreted as the relative precision of computing the inte-
gral of f (x, y) − min (f (x, y)) using the grid points. For
a smooth, non-oscillating function this value should be
roughly 1/(number of screen pixels in the plot).

• depth: max. refinement depth, logarithmic (default 3) –
means there will be at most 2depth extra points per initial
grid point (in each coordinate).

• output: name of the plotting backend. Supported names:
data (default). The data backend will return the data
as a list of triples such as {{x1, y1, z1}, {x2, y2, z2},
...}.

117

Other options may be supported in the future.

The current implementation can deal with a singularity
within the plotting range only if the function f(x,y) returns
Infinity, -Infinity or Undefined at the singularity. If the
function f(x,y) generates a numerical error and fails at a sin-
gularity, Plot3DS will fail only if one of the grid points falls on
the singularity. (All grid points are generated by bisection so in
principle the endpoints and the xpoints, ypoints parameters
could be chosen to avoid numerical singularities.)

The filename option is optional if using graphical backends,
but can be used to specify the location of the created data file.

*WIN32

Same limitations as Plot2D.

Examples:

In> Plot3DS(a*b^2)

Out> True;

In> V(Plot3DS(Sin(x)*Cos(y),x=0:20, y=0:20,depth=3))

CachedConstant: Info: constant Pi is being

recalculated at precision 10

CachedConstant: Info: constant Pi is being

recalculated at precision 11

Plot3DS: using 1699 points for function Sin(x)*Cos(y)

Plot3DS: max. used 8 subdivisions for Sin(x)*Cos(y)

Plot3DS’datafile: created file ’/tmp/plot.tmp/data1’

Out> True;

See also: V, NFunction, Plot2D

XmlExplodeTag — convert XML
strings to tag objects

(Yacas internal)

Calling format:

XmlExplodeTag(xmltext)

Parameters:

xmltext – string containing some XML tokens

Description:

XmlExplodeTag parses the first XML token in xmltext and re-
turns a Yacas expression.

The following subset of XML syntax is supported currently:

• <TAG [options]> – an opening tag

• </TAG [options]> – a closing tag

• <TAG [options] /> – an open/close tag

• plain (non-tag) text

The tag options take the form paramname="value".

If given an XML tag, XmlExplodeTag returns a structure
of the form XmlTag(name,params,type). In the returned ob-
ject, name is the (capitalized) tag name, params is an assoc list
with the options (key fields capitalized), and type can be either
“Open”, “Close” or “OpenClose”.

If given a plain text string, the same string is returned.

Examples:

In> XmlExplodeTag("some plain text")

Out> "some plain text";

In> XmlExplodeTag("<a name=\"blah blah\"

align=\"left\">")

Out> XmlTag("A",{{"ALIGN","left"},

{"NAME","blah blah"}},"Open");

In> XmlExplodeTag("</p>")

Out> XmlTag("P",{},"Close");

In> XmlExplodeTag("
")

Out> XmlTag("BR",{},"OpenClose");

See also: XmlTokenizer

DefaultTokenizer — select the de-
fault syntax tokenizer for parsing
the input

XmlTokenizer — select an XML syn-
tax tokenizer for parsing the input

(Yacas internal)

Calling format:

DefaultTokenizer()

XmlTokenizer()

Description:

A “tokenizer” is an internal routine in the kernel that parses the
input into Yacas expressions. This affects all input typed in by
a user at the prompt and also the input redirected from files or
strings using FromFile and FromString and read using Read or
ReadToken.

The Yacas environment currently supports some experimen-
tal tokenizers for various syntaxes. DefaultTokenizer switches
to the tokenizer used for default Yacas syntax. XmlTokenizer

switches to an XML syntax. Note that setting the tokenizer is
a global side effect. One typically needs to switch back to the
default tokenizer when finished reading the special syntax.

Care needs to be taken when kernel errors are raised during
a non-default tokenizer operation (as with any global change in
the environment). Errors need to be caught with the TrapError

function. The error handler code should re-instate the default
tokenizer, or else the user will be unable to continue the ses-
sion (everything a user types will be parsed using a non-default
tokenizer).

When reading XML syntax, the supported formats are the
same as those of XmlExplodeTag. The parser does not vali-
date anything in the XML input. After an XML token has
been read in, it can be converted into an Yacas expression with
XmlExplodeTag. Note that when reading XML, any plain text
between tags is returned as one token. Any malformed XML
will be treated as plain text.

Example:

In> [XmlTokenizer(); q:=ReadToken(); \

DefaultTokenizer();q;]

<a>Out> <a>;

Note that:

1. after switching to XmlTokenizer the In> prompt disap-
peared; the user typed <a> and the Out> prompt with the
resulting expression appeared.

118

2. The resulting expression is an atom with the string repre-
sentation <a>; it is not a string.

See also: OMRead, TrapError, XmlExplodeTag, ReadToken,
FromFile, FromString

OMForm — convert Yacas expression
to OpenMath

OMRead — convert expression from
OpenMath to Yacas expression

(standard library)

Calling format:

OMForm(expression)

OMRead()

Parameters:

expression – expression to convert

Description:

OMForm prints an OpenMath representation of the input parame-
ter expression to standard output. OMRead reads an OpenMath
expression from standard input and returns a normal Yacas ex-
pression that matches the input OpenMath expression.

If a Yacas symbol does not have a mapping defined by OMDef,
it is translated to and from OpenMath as the OpenMath symbol
in the CD “yacas” with the same name as it has in Yacas.

Example:

In> str:=ToString()OMForm(2+Sin(a*3))

Out> "<OMOBJ>

<OMA>

<OMS cd="arith1" name="plus"/>

<OMI>2</OMI>

<OMA>

<OMS cd="transc1" name="sin"/>

<OMA>

<OMS cd="arith1" name="times"/>

<OMV name="a"/>

<OMI>3</OMI>

</OMA>

</OMA>

</OMA>

</OMOBJ>

";

In> FromString(str)OMRead()

Out> 2+Sin(a*3);

In> OMForm(NotDefinedInOpenMath(2+3))

<OMOBJ>

<OMA>

<OMS cd="yacas" name="NotDefinedInOpenMath"/>

<OMA>

<OMS cd="arith1" name="plus"/>

<OMI>2</OMI>

<OMI>3</OMI>

</OMA>

</OMA>

</OMOBJ>

Out> True

See also: XmlTokenizer, XmlExplodeTag, OMDef

OMDef — define translations from Ya-
cas to OpenMath and vice-versa.

(standard library)

Calling format:

OMDef(yacasForm, cd, name)

OMDef(yacasForm, cd, name, yacasToOM)

OMDef(yacasForm, cd, name, yacasToOM, omToYacas)

Parameters:

yacasForm – string with the name of a Yacas symbol, or a Yacas
expression

cd – OpenMath Content Dictionary for the symbol
name – OpenMath name for the symbol
yacasToOM – rule for translating an application of that symbol

in Yacas into an OpenMath expression
omToYacas – rule for translating an OpenMath expression into

an application of this symbol in Yacas

Description:

OMDef defines the translation rules for symbols between the
Yacas representation and OpenMath. The first parameter,
yacasForm, can be a string or an expression. The difference
is that when giving an expression only the omToYacas transla-
tion is defined, and it uses the exact expression given. This
is used for OpenMath symbols that must be translated into a
whole subexpression in Yacas, such as set1:emptyset which
gets translated to an empty list as follows:

In> OMDef({}, "set1","emptyset")

Out> True

In> FromString("<OMOBJ><OMS cd=\"set1\" name=\"emptyset\"/></OMOBJ> ")OMRead()

Out> {}

In> IsList(%)

Out> True

Otherwise, a symbol that is not inside an application (OMA)
gets translated to the Yacas atom with the given name:

In> OMDef("EmptySet", "set1","emptyset")

Warning: the mapping for set1:emptyset was already defined as {} , but is redefined now as EmptySet

Out> True

In> FromString("<OMOBJ><OMS cd=\"set1\" name=\"emptyset\"/></OMOBJ> ")OMRead()

Out> EmptySet

The definitions for the symbols in the Yacas library are in
the *.rep script subdirectories. In those modules for which the
mappings are defined, there is a file called om.ys that contains
the OMDef calls. Those files are loaded in openmath.rep/om.ys,
so any new file must be added to the list there, at the end of
the file.

A rule is represented as a list of expressions. Since both
OM and Yacas expressions are actually lists, the syntax is the
same in both directions. There are two template forms that are
expanded before the translation:

• $: this symbol stands for the translation of the symbol
applied in the original expression.

• path: a path into the original expression (list) to extract
an element, written as an underscore applied to an integer
or a list of integers. Those integers are indexes into expres-
sions, and integers in a list are applied recursively starting
at the original expression. For example, 2 means the sec-
ond parameter of the expression, while {3,2,1} means
the first parameter of the second parameter of the third
parameter of the original expression.

119

They can appear anywhere in the rule as expressions or subex-
pressions.

Finally, several alternative rules can be specified by joining
them with the | symbol, and each of them can be annotated
with a post-predicate applied with the underscore symbol, in
the style of Yacas’ simplification rules. Only the first alternative
rule that matches is applied, so the more specific rules must be
written first.

There are special symbols recognized by OMForm to output
OpenMath constructs that have no specific parallel in Yacas, such
as an OpenMath symbol having a CD and name: Yacas symbols
have only a name. Those special symbols are:

• OMS(cd, name): <OMS cd="cd" name="name">

• OMA(f x y ...): <OMA>f x y ...</OMA>

• OMBIND(binderSymbol, bvars, expression):
<OMBIND>binderSymbol bvars expression</OMBIND>,
where bvars must be produced by using OMBVAR(...).

• OMBVAR(x y ...): <OMBVAR>x y ...</OMBVAR>

• OME(...): <OME>...</OME>

When translating from OpenMath to Yacas, we just store
unknown symbols as OMS("cd", "name"). This way we don’t
have to bother defining bogus symbols for concepts that Yacas
does not handle, and we can evaluate expressions that contain
them.

Examples:

In> OMDef("Sqrt" , "arith1", "root", { $, _1, 2 }, $(_1)_(_2=2) | (_1^(1/_2)));

Out> True

In> OMForm(Sqrt(3))

<OMOBJ>

<OMA>

<OMS cd="arith1" name="root"/>

<OMI>3</OMI>

<OMI>2</OMI>

</OMA>

</OMOBJ>

Out> True

In> FromString("<OMOBJ><OMA><OMS cd=\"arith1\" name=\"root\"/><OMI>16</OMI><OMI>2</OMI></OMA></OMOBJ> ")OMRead()

Out> Sqrt(16)

In> FromString("<OMOBJ><OMA><OMS cd=\"arith1\" name=\"root\"/><OMI>16</OMI><OMI>3</OMI></OMA></OMOBJ> ")OMRead()

Out> 16^(1/3)

In> OMDef("Limit", "limit1", "limit", \

{ $, _2, OMS("limit1", "under"), OMBIND(OMS("fns1", "lambda"), OMBVAR(_1), _4) }_(_3=Left) \

|{ $, _2, OMS("limit1", "above"), OMBIND(OMS("fns1", "lambda"), OMBVAR(_1), _4) }_(_3=Right) \

|{ $, _2, OMS("limit1", "both_sides"), OMBIND(OMS("fns1", "lambda"), OMBVAR(_1), _3) }, \

{ $, _{3,2,1}, _1, Left, _{3,3}}_(_2=OMS("limit1", "below")) \

|{$, _{3,2,1}, _1, Right, _{3,3}}_(_2=OMS("limit1", "above")) \

|{$, _{3,2,1}, _1, _{3,3}} \

);

In> OMForm(Limit(x,0) Sin(x)/x)

<OMOBJ>

<OMA>

<OMS cd="limit1" name="limit"/>

<OMI>0</OMI>

<OMS cd="limit1" name="both_sides"/>

<OMBIND>

<OMS cd="fns1" name="lambda"/>

<OMBVAR>

<OMV name="x"/>

</OMBVAR>

<OMA>

<OMS cd="arith1" name="divide"/>

<OMA>

<OMS cd="transc1" name="sin"/>

<OMV name="x"/>

</OMA>

<OMV name="x"/>

</OMA>

</OMBIND>

</OMA>

</OMOBJ>

Out> True

In> OMForm(Limit(x,0,Right) 1/x)

<OMOBJ>

<OMA>

<OMS cd="limit1" name="limit"/>

<OMI>0</OMI>

<OMS cd="limit1" name="above"/>

<OMBIND>

<OMS cd="fns1" name="lambda"/>

<OMBVAR>

<OMV name="x"/>

</OMBVAR>

<OMA>

<OMS cd="arith1" name="divide"/>

<OMI>1</OMI>

<OMV name="x"/>

</OMA>

</OMBIND>

</OMA>

</OMOBJ>

Out> True

In> FromString(ToString()OMForm(Limit(x,0,Right) 1/x))OMRead()

Out> Limit(x,0,Right)1/x

In> %

Out> Infinity

See also: OMForm, OMRead

120

Chapter 29

String manipulation

StringMid’Set — change a substring

(Yacas internal)

Calling format:

StringMid’Set(index,substring,string)

Parameters:

index – index of substring to get
substring – substring to store
string – string to store substring in.

Description:

Set (change) a part of a string. It leaves the original alone,
returning a new changed copy.

Examples:

In> StringMid’Set(3,"XY","abcdef")

Out> "abXYef";

See also: StringMid’Get, Length

StringMid’Get — retrieve a substring

(Yacas internal)

Calling format:

StringMid’Get(index,length,string)

Parameters:

index – index of substring to get
length – length of substring to get
string – string to get substring from

Description:

StringMid’Get returns a part of a string. Substrings can also
be accessed using the [] operator.

Examples:

In> StringMid’Get(3,2,"abcdef")

Out> "cd";

In> "abcdefg"[2 .. 4]

Out> "bcd";

See also: StringMid’Set, Length

String — convert atom to string

Atom — convert string to atom

(Yacas internal)

Calling format:

Atom("string")

String(atom)

Parameters:

atom – an atom
"string" – a string

Description:

Returns an atom with the string representation given as the
evaluated argument. Example: Atom("foo"); returns foo.

String is the inverse of Atom: turns atom into "atom".

Examples:

In> String(a)

Out> "a";

In> Atom("a")

Out> a;

ConcatStrings — concatenate strings

(Yacas internal)

Calling format:

ConcatStrings(strings)

Parameters:

strings – one or more strings

Description:

Concatenates strings.

Examples:

In> ConcatStrings("a","b","c")

Out> "abc";

See also: :

121

PatchString — execute commands
between <? and ?> in strings

(Yacas internal)

Calling format:

PatchString(string)

Parameters:

string – a string to patch

Description:

This function does the same as PatchLoad, but it works on a
string in stead of on the contents of a text file. See PatchLoad
for more details.

Examples:

In> PatchString("Two plus three \

is <? Write(2+3); ?> ");

Out> "Two plus three is 5 ";

See also: PatchLoad

122

Chapter 30

Probability and Statistics

30.1 Probability

Each distribution is represented as an entity. For each
distribution known to the system the consistency of pa-
rameters is checked. If the parameters for a distribution
are invalid, the functions return Undefined. For example,
NormalDistribution(a,-1) evaluates to Undefined, because of
negative variance.

BernoulliDistribution — Bernoulli
distribution

(standard library)

Calling format:

BernoulliDistribution(p)

Parameters:

p – number, probability of an event in a single trial

Description:

A random variable has a Bernoulli distribution with probability
p if it can be interpreted as an indicator of an event, where p is
the probability to observe the event in a single trial.

Numerical value of p must satisfy 0 < p < 1.

See also: BinomialDistribution

BinomialDistribution — binomial
distribution

(standard library)

Calling format:

BinomialDistribution(p,n)

Parameters:

p – number, probability to observe an event in single trial
n – number of trials

Description:

Suppose we repeat a trial n times, the probability to observe
an event in a single trial is p and outcomes in all trials are mu-
tually independent. Then the number of trials when the event
occurred is distributed according to the binomial distribution.
The probability of that is BinomialDistribution(p,n).

Numerical value of p must satisfy 0 < p < 1. Numerical value
of n must be a positive integer.

See also: BernoulliDistribution

tDistribution — Student’s t distri-
bution

(standard library)

Calling format:

{tDistribution}(m)

Parameters:

m – integer, number of degrees of freedom

Description:

Let Y and Z be independent random variables, Y have
the NormalDistribution(0,1), Z have ChiSquareDistribution(m).
Then Y√

Z
m

has tDistribution(m).

Numerical value of m must be positive integer.

PDF — probability density function

(standard library)

Calling format:

PDF(dist,x)

Parameters:

dist – a distribution type
x – a value of random variable

Description:

If dist is a discrete distribution, then PDF returns the probabil-
ity for a random variable with distribution dist to take a value
of x. If dist is a continuous distribution, then PDF returns the
density function at point x.

See also: CDF

30.2 Statistics

ChiSquareTest — Pearson’s
ChiSquare test

(standard library)

Calling format:

123

ChiSquareTest(observed,expected)

ChiSquareTest(observed,expected,params)

Parameters:

observed – list of observed frequencies
expected – list of expected frequencies
params – number of estimated parameters

Description:

ChiSquareTest is intended to find out if our sample was drawn
from a given distribution or not. To find this out, one has to cal-
culate observed frequencies into certain intervals and expected
ones. To calculate expected frequency the formula ni ≡ npi
must be used, where pi is the probability measure of i-th in-
terval, and n is the total number of observations. If any of the
parameters of the distribution were estimated, this number is
given as params.

The function returns a list of three local substitution rules.
First of them contains the test statistic, the second contains the
value of the parameters, and the last one contains the degrees
of freedom.

The test statistic is distributed as ChiSquareDistribution.

124

Chapter 31

Number theory

This chapter describes functions that are of interest in number
theory. These functions typically operate on integers. Some of
these functions work quite slowly.

IsPrime — test for a prime number

IsSmallPrime — test for a (small)
prime number

(standard library)

Calling format:

IsPrime(n)

IsSmallPrime(n)

Parameters:

n – integer to test

Description:

The commands checks whether n, which should be a positive
integer, is a prime number. A number n is a prime number if
it is only divisible by 1 and itself. As a special case, 1 is not
considered a prime number. The first prime numbers are 2, 3,
5, ...

The function IsShortPrime only works for numbers n ≤
65537 but it is very fast.

The function IsPrime operates on all numbers and uses dif-
ferent algorithms depending on the magnitude of the number
n. For small numbers n ≤ 65537, a constant-time table lookup
is performed. (The function IsShortPrime is used for that.)
For numbers n between 65537 and 34155071728321, the func-
tion uses the Rabin-Miller test together with table lookups to
guarantee correct results.

For even larger numbers a version of the probabilistic Rabin-
Miller test is executed. The test can sometimes mistakenly mark
a number as prime while it is in fact composite, but a prime
number will never be mistakenly declared composite. The pa-
rameters of the test are such that the probability for a false
result is less than 10−24.

Examples:

In> IsPrime(1)

Out> False;

In> IsPrime(2)

Out> True;

In> IsPrime(10)

Out> False;

In> IsPrime(23)

Out> True;

In> Select("IsPrime", 1 .. 100)

Out> {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,

53,59,61,67,71,73,79,83,89,97};

See also: IsPrimePower, Factors

IsComposite — test for a composite
number

(standard library)

Calling format:

IsComposite(n)

Parameters:

n – positive integer

Description:

This function is the logical negation of IsPrime, except for the
number 1, which is neither prime nor composite.

Examples:

In> IsComposite(1)

Out> False;

In> IsComposite(7)

Out> False;

In> IsComposite(8)

Out> True;

In> Select(IsComposite,1 .. 20)

Out> {4,6,8,9,10,12,14,15,16,18,20};

See also: IsPrime

IsCoprime — test if integers are co-
prime

(standard library)

Calling format:

IsCoprime(m,n)

IsCoprime(list)

125

Parameters:

m,n – positive integers
list – list of positive integers

Description:

This function returns True if the given pair or list of integers are
coprime, also called relatively prime. A pair or list of numbers
are coprime if they share no common factors.

Examples:

In> IsCoprime({3,4,5,8})

Out> False;

In> IsCoprime(15,17)

Out> True;

See also: Prime

IsSquareFree — test for a square-free
number

(standard library)

Calling format:

IsSquareFree(n)

Parameters:

n – positive integer

Description:

This function uses the Moebius function to tell if the given num-
ber is square-free, which means it has distinct prime factors. If
Moebius (n) 6= 0, then n is square free. All prime numbers are
trivially square-free.

Examples:

In> IsSquareFree(37)

Out> True;

In> IsSquareFree(4)

Out> False;

In> IsSquareFree(16)

Out> False;

In> IsSquareFree(18)

Out> False;

See also: Moebius, SquareFreeDivisorsList

IsPrimePower — test for a power of a
prime number

(standard library)

Calling format:

IsPrimePower(n)

Parameters:

n – integer to test

Description:

This command tests whether “n”, which should be a positive
integer, is a prime power, that is whether it is of the form pm,
with “p” prime and “m” an integer.

This function does not try to decompose the number n into
factors. Instead we check for all prime numbers r = 2, 3, ...
that the r-th root of n is an integer, and we find such r and m
that n = mr, we check that m is a prime. If it is not a prime,
we execute the same function call on m.

Examples:

In> IsPrimePower(9)

Out> True;

In> IsPrimePower(10)

Out> False;

In> Select("IsPrimePower", 1 .. 50)

Out> {2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,

29,31,32,37,41,43,47,49};

See also: IsPrime, Factors

NextPrime — generate a prime fol-
lowing a number

(standard library)

Calling format:

NextPrime(i)

Parameters:

i – integer value

Description:

The function finds the smallest prime number that is greater
than the given integer value.

The routine generates “candidate numbers” using the formula
n+ 2 (−n) mod 3 where n is an odd number (this generates the
sequence 5, 7, 11, 13, 17, 19, ...) and IsPrime() to test whether
the next candidate number is in fact prime.

Example:

In> NextPrime(5)

Out> 7;

See also: IsPrime

IsTwinPrime — test for a twin prime

(standard library)

Calling format:

IsTwinPrime(n)

Parameters:

n – positive integer

Description:

126

This function returns True if n is a twin prime. By definition, a
twin prime is a prime number n such that n+ 2 is also a prime
number.

Examples:

In> IsTwinPrime(101)

Out> True;

In> IsTwinPrime(7)

Out> False;

In> Select(IsTwinPrime, 1 .. 100)

Out> {3,5,11,17,29,41,59,71};

See also: IsPrime

IsIrregularPrime — test for an irreg-
ular prime

(standard library)

Calling format:

IsIrregularPrime(n)

Parameters:

n – positive integer

Description:

This function returns True if n is an irregular prime. A prime
number n is irregular if and only if n divides the numerator of a
Bernoulli number B2i, where 2i+ 1 < n. Small irregular primes
are quite rare; the only irregular primes under 100 are 37, 59
and 67. Asymptotically, roughly 40% of primes are irregular.

Examples:

In> IsIrregularPrime(5)

Out> False;

In> Select(IsIrregularPrime,1 .. 100)

Out> {37,59,67};

See also: IsPrime

IsCarmichaelNumber — test for a
Carmichael number

(standard library)

Calling format:

IsCarmichaelNumber(n)

Parameters:

n – positive integer

Description:

This function returns True if n is a Carmichael number, also
called an absolute pseudoprime. They have the property that
bn−1 mod n = 1 for all b satisfying Gcd (b, n) = 1. These num-
bers cannot be proved composite by Fermat’s little theorem.
Because the previous property is extremely slow to test, the
following equivalent property is tested by Yacas: for all prime
factors pi of n, (n− 1) mod (pi − 1) = 0 and n must be square
free. Also, Carmichael numbers must be odd and have at least
three prime factors. Although these numbers are rare (there are
only 43 such numbers between 1 and 106), it has recently been
proven that there are infinitely many of them.

Examples:

In> IsCarmichaelNumber(561)

Out> True;

In> Time(Select(IsCarmichaelNumber,1 .. 10000))

504.19 seconds taken

Out> {561,1105,1729,2465,2821,6601,8911};

See also: IsSquareFree, IsComposite

Factors — factorization

(standard library)

Calling format:

Factors(x)

Parameters:

x – integer or univariate polynomial

Description:

This function decomposes the integer number x into a product
of numbers. Alternatively, if x is a univariate polynomial, it is
decomposed in irreducible polynomials.

The factorization is returned as a list of pairs. The first mem-
ber of each pair is the factor, while the second member denotes
the power to which this factor should be raised. So the factor-
ization x = pn1

1 ...pn9
9 is returned as {{p1,n1}, ..., {p9,n9}}.

Examples:

In> Factors(24);

Out> {{2,3},{3,1}};

In> Factors(2*x^3 + 3*x^2 - 1);

Out> {{2,1},{x+1,2},{x-1/2,1}};

See also: Factor, IsPrime, GaussianFactors

IsAmicablePair — test for a pair of
amicable numbers

(standard library)

Calling format:

IsAmicablePair(m,n)

Parameters:

m, n – positive integers

127

Description:

This function tests if a pair of numbers are amicable. A pair of
numbers m, n has this property if the sum of the proper divisors
of m is n and the sum of the proper divisors of n is m.

Examples:

In> IsAmicablePair(200958394875, 209194708485)

Out> True;

In> IsAmicablePair(220, 284)

Out> True;

See also: ProperDivisorsSum

Factor — factorization, in pretty
form

(standard library)

Calling format:

Factor(x)

Parameters:

x – integer or univariate polynomial

Description:

This function factorizes “x”, similarly to Factors, but it shows
the result in a nicer human readable format.

Examples:

In> PrettyForm(Factor(24));

3

2 * 3

Out> True;

In> PrettyForm(Factor(2*x^3 + 3*x^2 - 1));

2 / 1 \

2 * (x + 1) * | x - - |

\ 2 /

Out> True;

See also: Factors, IsPrime, PrettyForm

Divisors — number of divisors

(standard library)

Calling format:

Divisors(n)

Parameters:

n – positive integer

Description:

Divisors returns the number of positive divisors of a number.
A number is prime if and only if it has two divisors, 1 and itself.

Examples:

In> Divisors(180)

Out> 18;

In> Divisors(37)

Out> 2;

See also: DivisorsSum, ProperDivisors,
ProperDivisorsSum, Moebius

DivisorsSum — the sum of divisors

(standard library)

Calling format:

DivisorsSum(n)

Parameters:

n – positive integer

Description:

DivisorsSum returns the sum all numbers that divide it. A
number n is prime if and only if the sum of its divisors are n+1.

Examples:

In> DivisorsSum(180)

Out> 546;

In> DivisorsSum(37)

Out> 38;

See also: DivisorsSum, ProperDivisors,
ProperDivisorsSum, Moebius

ProperDivisors — the number of
proper divisors

(standard library)

Calling format:

ProperDivisors(n)

Parameters:

n – positive integer

Description:

ProperDivisors returns the number of proper divisors, i.e
Divisors(n)-1, since n is not counted. An integer n is prime if
and only if it has 1 proper divisor.

Examples:

In> ProperDivisors(180)

Out> 17;

In> ProperDivisors(37)

Out> 1;

See also: DivisorsSum, ProperDivisors,
ProperDivisorsSum, Moebius

128

ProperDivisorsSum — the sum of
proper divisors

(standard library)

Calling format:

ProperDivisorsSum(n)

Parameters:

n – positive integer

Description:

ProperDivisorsSum returns the sum of proper divisors, i.e.
ProperDivisors(n)-n, since n is not counted. n is prime if
and only if ProperDivisorsSum(n)==1.

Examples:

In> ProperDivisorsSum(180)

Out> 366;

In> ProperDivisorsSum(37)

Out> 1;

See also: DivisorsSum, ProperDivisors,
ProperDivisorsSum, Moebius

Moebius — the Moebius function

(standard library)

Calling format:

Moebius(n)

Parameters:

n – positive integer

Description:

The Moebius function is 0 when a prime factor is repeated
(which means it is not square-free) and is (−1)r if n has r dis-
tinct factors. Also, Moebius (1) = 1.

Examples:

In> Moebius(10)

Out> 1;

In> Moebius(11)

Out> -1;

In> Moebius(12)

Out> 0;

In> Moebius(13)

Out> -1;

See also: DivisorsSum, ProperDivisors,
ProperDivisorsSum, MoebiusDivisorsList

CatalanNumber — return the nth Catalan
Number

(standard library)

Calling format:

CatalanNumber(n)

Parameters:

n – positive integer

Description:

This function returns the n-th Catalan number, defined as
(2nn)
n+1

.

Examples:

In> CatalanNumber(10)

Out> 16796;

In> CatalanNumber(5)

Out> 42;

See also: Bin

FermatNumber — return the nth Fermat
Number

(standard library)

Calling format:

FermatNumber(n)

Parameters:

n – positive integer

Description:

This function returns the n-th Fermat number, which is defined
as 22n + 1.

Examples:

In> FermatNumber(7)

Out> 340282366920938463463374607431768211457;

See also: Factor

HarmonicNumber — return the nth Har-
monic Number

(standard library)

Calling format:

HarmonicNumber(n)

HarmonicNumber(n,r)

Parameters:

n, r – positive integers

Description:

129

This function returns the n-th Harmonic number, which is de-
fined as

∑n

k=1
1
k

. If given a second argument, the Harmonic
number of order r is returned, which is defined as

∑n

k=1
k−r.

Examples:

In> HarmonicNumber(10)

Out> 7381/2520;

In> HarmonicNumber(15)

Out> 1195757/360360;

In> HarmonicNumber(1)

Out> 1;

In> HarmonicNumber(4,3)

Out> 2035/1728;

See also: Sum

StirlingNumber1 — return the n,mth
Stirling Number of the first kind

(standard library)

Calling format:

StirlingNumber1(n,m)

Parameters:

n, m – positive integers

Description:

This function returns the signed Stirling Number of the first
kind. All Stirling Numbers are integers. If m > n, then
StirlingNumber1 returns 0.

Examples:

In> StirlingNumber1(10,5)

Out> -269325;

In> StirlingNumber1(3,6)

Out> 0;

See also: StirlingNumber2

StirlingNumber2 — return the n,mth
Stirling Number of the second kind

(standard library)

Calling format:

StirlingNumber1(n,m)

Parameters:

n, m – positive integers

Description:

This function returns the Stirling Number of the second kind.
All Stirling Numbers are positive integers. If m > n, then
StirlingNumber2 returns 0.

Examples:

In> StirlingNumber2(3,6)

Out> 0;

In> StirlingNumber2(10,4)

Out> 34105;

See also: StirlingNumber1

DivisorsList — the list of divisors

(standard library)

Calling format:

DivisorsList(n)

Parameters:

n – positive integer

Description:

DivisorsList creates a list of the divisors of n. This is useful
for loops like

ForEach(d,DivisorsList(n))

Examples:

In> DivisorsList(18)

Out> {1,2,3,6,9,18};

See also: DivisorsSum

SquareFreeDivisorsList — the list of
square-free divisors

(standard library)

Calling format:

SquareFreeDivisorsList(n)

Parameters:

n – positive integer

Description:

SquareFreeDivisorsList creates a list of the square-free divi-
sors of n. Square-free numbers are numbers that have only sim-
ple prime factors (no prime powers). For example, 18 = 2 · 3 · 3
is not square-free because it contains a square of 3 as a factor.

Examples:

In> SquareFreeDivisorsList(18)

Out> {1,2,3,6};

See also: DivisorsList

MoebiusDivisorsList — the list of di-
visors and Moebius values

(standard library)

Calling format:

MoebiusDivisorsList(n)

Parameters:

n – positive integer

Description:

130

Returns a list of pairs of the form {d,m}, where d runs through
the squarefree divisors of n and m = Moebius (d). This is more
efficient than making a list of all square-free divisors of n and
then computing Moebius on each of them. It is useful for com-
puting the cyclotomic polynomials. It can be useful in other
computations based on the Moebius inversion formula.

Examples:

In> MoebiusDivisorsList(18)

Out> {{1,1},{2,-1},{3,-1},{6,1}};

See also: DivisorsList, Moebius

SumForDivisors — loop over divisors

(standard library)

Calling format:

SumForDivisors(var,n,expr)

Parameters:

var – atom, variable name
n – positive integer
expr – expression depending on var

Description:

This function performs the sum of the values of the expres-
sion expr while the variable var runs through the divisors of
n. For example, SumForDivisors(d, 10, d2̂) sums d2 where d
runs through the divisors of 10. This kind of computation is
frequently used in number theory.

See also: DivisorsList

RamanujanSum — compute the “Ra-
manujan sum”

(standard library)

Calling format:

RamanujanSum(k,n)

Parameters:

k, n – positive integers

Description:

This function computes the Ramanujan sum, i.e. the sum of
the n-th powers of the k-th primitive roots of the unit:

k∑
l=1

exp
(

2πı
ln

k

)
where l runs thought the integers between 1 and k − 1 that

are coprime to l.
The computation is done by using the formula in T. M. Apos-

tol, Introduction to Analytic Theory (Springer-Verlag), Theorem
8.6.

Cyclotomic — construct the cyclo-
tomic polynomial

(standard library)

Calling format:

Cyclotomic(n,x)

Parameters:

n – positive integer
x – variable

Description:

Returns the cyclotomic polynomial in the variable x (which is
the minimal polynomial of the n-th primitive roots of the unit,
over the field of rational numbers).

For n even, we write n = mk, where k is a power of 2 and m
is odd, and reduce it to the case of even m since

Cyclotomic (n, x) = Cyclotomic
(
m,−x

k
2

)
.

If m = 1, n is a power of 2, and Cyclotomic (n, x) = xk + 1.
For n odd, the algorithm is based on the formula

Cyclotomic (n, x) ≡ Prod
((
x

n
d − 1

)µ(d))
,

where d runs through the divisors of n. In order to compute this
in a efficient way, we use the function MoebiusDivisorsList.
Then we compute in poly1 the product of x

n
d −1 with µ (d) = 1 ,

and in poly2 the product of these polynomials with µ (d) = −1.
Finally we compute the quotient poly1/poly2.

See also: RamanujanSum

PAdicExpand — p-adic expansion

(standard library)

Calling format:

PAdicExpand(n, p)

Parameters:

n – number or polynomial to expand
p – base to expand in

Description:

This command computes the p-adic expansion of n. In other
words, n is expanded in powers of p. The argument n can be
either an integer or a univariate polynomial. The base p should
be of the same type.

Examples:

In> PrettyForm(PAdicExpand(1234, 10));

2 3

3 * 10 + 2 * 10 + 10 + 4

Out> True;

In> PrettyForm(PAdicExpand(x^3, x-1));

2 3

3 * (x - 1) + 3 * (x - 1) + (x - 1) + 1

Out> True;

See also: Mod, ContFrac, FromBase, ToBase

131

IsQuadraticResidue — functions re-
lated to finite groups

LegendreSymbol — functions related
to finite groups

JacobiSymbol — functions related to
finite groups

(standard library)

Calling format:

IsQuadraticResidue(m,n)

LegendreSymbol(m,n)

JacobiSymbol(m,n)

Parameters:

m, n – integers, n must be odd and positive

Description:

A number m is a “quadratic residue modulo n” if there exists a
number k such that k2 ≡ m mod n.

The Legendre symbol (m/n) is defined as +1 if m is a
quadratic residue modulo n and −1 if it is a non-residue. The
Legendre symbol is equal to 0 if m

n
is an integer.

The Jacobi symbol
(
m
n

)
is defined as the product of the Leg-

endre symbols of the prime factors fi of n = fp11 ...fpss ,(
m

n

)
≡
(
m

f1

)p1
...

(
m

fs

)ps
.

(Here we used the same notation
(
a
b

)
for the Legendre and the

Jacobi symbols; this is confusing but seems to be the current
practice.) The Jacobi symbol is equal to 0 if m, n are not
mutually prime (have a common factor). The Jacobi symbol
and the Legendre symbol have values +1, −1 or 0. If n is prime,
then the Jacobi symbol is the same as the Legendre symbol.

The Jacobi symbol can be efficiently computed without know-
ing the full factorization of the number n.

Examples:

In> IsQuadraticResidue(9,13)

Out> True;

In> LegendreSymbol(15,23)

Out> -1;

In> JacobiSymbol(7,15)

Out> -1;

See also: Gcd

GaussianFactors — factorization in
Gaussian integers

(standard library)

Calling format:

GaussianFactors(z)

Parameters:

z – Gaussian integer

Description:

This function decomposes a Gaussian integer number z into a
product of Gaussian prime factors. A Gaussian integer is a com-
plex number with integer real and imaginary parts. A Gaussian
integer z can be decomposed into Gaussian primes essentially
in a unique way (up to Gaussian units and associated prime
factors), i.e. one can write z as

z = upn1
1 ...pns

s ,

where u is a Gaussian unit and p1, p2, ..., ps are Gaussian
primes.

The factorization is returned as a list of pairs. The first mem-
ber of each pair is the factor (a Gaussian integer) and the sec-
ond member denotes the power to which this factor should be
raised. So the factorization is returned as a list, e.g. {{p1,n1},
{p2,n2}, ...}.

Examples:

In> GaussianFactors(5)

Out> {{Complex(2,1),1},{Complex(2,-1),1}};

In> GaussianFactors(3+I)

Out> {{Complex(1,1),1},{Complex(2,-1),1}};

See also: Factors, IsGaussianPrime, IsGaussianUnit

GaussianNorm — norm of a Gaussian
integer

(standard library)

Calling format:

GaussianNorm(z)

Parameters:

z – Gaussian integer

Description:

This function returns the norm of a Gaussian integer z = a+ bı,
defined as a2 + b2.

Examples:

In> GaussianNorm(2+I)

Out> 5;

See also: IsGaussianInteger

IsGaussianUnit — test for a Gaus-
sian unit

(standard library)

Calling format:

IsGaussianUnit(z)

Parameters:

132

z – a Gaussian integer

Description:

This function returns True if the argument is a unit in the Gaus-
sian integers and False otherwise. A unit in a ring is an element
that divides any other element.

There are four “units” in the ring of Gaussian integers, which
are 1, −1, ı, and −ı.

Examples:

In> IsGaussianInteger(I)

Out> True;

In> IsGaussianUnit(5+6*I)

Out> False;

See also: IsGaussianInteger, IsGaussianPrime,
GaussianNorm

IsGaussianPrime — test for a Gaus-
sian prime

(standard library)

Calling format:

IsGaussianPrime(z)

Parameters:

z – a complex or real number

Description:

This function returns True if the argument is a Gaussian prime
and False otherwise.

A prime element x of a ring is divisible only by the units of
the ring and by associates of x. (“Associates” of x are elements
of the form xu where u is a unit of the ring).

Gaussian primes are Gaussian integers z = a+ bı that satisfy
one of the following properties:

• If Re (z) and Im (z) are nonzero then z is a Gaussian prime
if and only if Re (z)2 + Im (z)2 is an ordinary prime.

• If Re (z) = 0 then z is a Gaussian prime if and only if
Im (z) is an ordinary prime and Im (z) ≡ 3 mod 4.

• If Im (z) = 0 then z is a Gaussian prime if and only if
Re (z) is an ordinary prime and Re (z) ≡ 3 mod 4.

Examples:

In> IsGaussianPrime(13)

Out> False;

In> IsGaussianPrime(2+2*I)

Out> False;

In> IsGaussianPrime(2+3*I)

Out> True;

In> IsGaussianPrime(3)

Out> True;

See also: IsGaussianInteger, GaussianFactors

GaussianGcd — greatest common di-
visor in Gaussian integers

(standard library)

Calling format:

GaussianGcd(z,w)

Parameters:

z, w – Gaussian integers

Description:

This function returns the greatest common divisor, in the ring
of Gaussian integers, computed using Euclid’s algorithm. Note
that in the Gaussian integers, the greatest common divisor is
only defined up to a Gaussian unit factor.

Examples:

In> GaussianGcd(2+I,5)

Out> Complex(2,1);

The GCD of two mutually prime Gaussian integers might come
out to be equal to some Gaussian unit instead of 1:

In> GaussianGcd(2+I,3+I)

Out> -1;

See also: Gcd, Lcm, IsGaussianUnit

133

Chapter 32

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA, 02111-1307

USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook,
or other written document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that deriva-
tive works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for man-
uals for free software, because free software needs free docu-
mentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work con-
taining the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter
section of the Document that deals exclusively with the rela-
tionship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text ed-
itors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX in-
put format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modi-
fication. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or process-
ing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this Li-
cense, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.

134

Copying in Quantity

If you publish printed copies of the Document numbering more
than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both cov-
ers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto ad-
jacent pages.

If you publish or distribute Opaque copies of the Docu-
ment numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent
copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously
at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors
of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Docu-
ment under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of pre-
vious versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of
that version gives permission.

2. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the prin-
cipal authors of the Document (all of its principal authors,
if it has less than five).

3. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified

Version under the terms of this License, in the form shown
in the Addendum below.

7. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s
license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History”, and its title, and
add to it an item stating at least the title, year, new au-
thors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled “History” in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated
in the previous sentence.

10. Preserve the network location, if any, given in the Docu-
ment for public access to a Transparent copy of the Docu-
ment, and likewise the network locations given in the Doc-
ument for previous versions it was based on. These may be
placed in the “History” section. You may omit a network
location for a work that was published at least four years
before the Document itself, or if the original publisher of
the version it refers to gives permission.

11. In any section entitled “Acknowledgements” or “Dedica-
tions”, preserve the section’s title, and preserve in the sec-
tion all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unal-
tered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

13. Delete any section entitled “Endorsements”. Such a section
may not be included in the Modified Version.

14. Do not retitle any existing section as “Endorsements” or
to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it
contains nothing but endorsements of your Modified Version by
various parties – for example, statements of peer review or that
the text has been approved by an organization as the authori-
tative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released
under this License, under the terms defined in section 4 above

135

for modified versions, provided that you include in the combina-
tion all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice.

The combined work need only contain one copy of this Li-
cense, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled
“History” in the various original documents, forming one sec-
tion entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”.
You must delete all sections entitled “Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other
documents released under this License, and replace the individ-
ual copies of this License in the various documents with a single
copy that is included in the collection, provided that you fol-
low the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copy-
ing of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume
of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is
called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Doc-
ument within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of sec-
tion 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections. You
may include a translation of this License provided that you also
include the original English version of this License. In case of a
disagreement between the translation and the original English
version of this License, the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Docu-
ment except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Doc-
ument is void, and will automatically terminate your rights un-
der this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either
of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by
the Free Software Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include
a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is

granted to copy, distribute and/or modify this

document under the terms of the GNU Free

Documentation License, Version 1.1 or any later

version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR

TITLES, with the Front-Cover Texts being LIST, and

with the Back-Cover Texts being LIST. A copy of

the license is included in the section entitled

‘‘GNU Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant
Sections” instead of saying which ones are invariant. If you have
no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

136

Index

!, 29
!!, 29
!=, 93
%, 102
*, 11
***, 29
+, 11
++, 107
-, 11
--, 107
., 46
.., 83
/, 11
/:, 90
/::, 90
/@, 82
:, 82
:=, 105
<, 17
<<, 13
<=, 17
=, 93
>, 17
>=, 18
>>, 13
@, 82
^, 12

Abs, 21
Add, 26
AddTo, 84
And, 94
Append, 73
Apply, 89
ArcCos, 20
ArcSin, 20
ArcTan, 20
Arg, 34
Assoc, 77
AssocDelete, 78
AssocIndices, 78
Atom, 121

BaseVector, 47
Bernoulli, 31
BernoulliDistribution, 123
BigOh, 27
Bin, 29
BinomialDistribution, 123
BubbleSort, 80

CanProve, 44
Catalan, 104
CatalanNumber, 129
Ceil, 15
CForm, 110

CharacteristicEquation, 50
ChiSquareTest, 123
Cholesky, 51
Clear, 106
Coef, 60
CoFactor, 50
Complex, 33
Concat, 71
ConcatStrings, 121
Conjugate, 34
Contains, 73
Content, 61
ContFrac, 14
Cos, 19
Count, 75
CrossProduct, 46
Curl, 22
Cyclotomic, 131

D, 22
Decimal, 14
DefaultTokenizer, 118
DefLoad, 115
Degree, 60
Delete, 71
Denom, 16
DestructiveAppend, 74
DestructiveDelete, 71
DestructiveInsert, 72
DestructiveReplace, 72
DestructiveReverse, 70
Determinant, 49
Diagonal, 48
DiagonalMatrix, 48
Difference, 76
Div, 12
Diverge, 23
Divisors, 128
DivisorsList, 130
DivisorsSum, 128
Dot, 46
Drop, 77

Echo, 109
EigenValues, 51
EigenVectors, 51
Eliminate, 40
EndOfFile, 102
Euler, 32
Eulerian, 30
Eval, 85
EvalFormula, 110
EvaluateHornerScheme, 63
Exp, 21
Expand, 60
ExpandBrackets, 63

137

Factor, 128
FactorialSimplify, 36
Factorize, 26
Factors, 127
False, 102
FermatNumber, 129
FillList, 76
Find, 73
FindFile, 115
FindRealRoots, 42
FlatCopy, 73
Flatten, 78
Floor, 15
For, 88
ForEach, 89
FromBase, 13
FromFile, 112
FromString, 112
FullForm, 109
FuncList, 80
FuncListArith, 80
FuncListSome, 80
Function, 87

Gamma, 31
gamma, 104
GaussianFactors, 132
GaussianGcd, 133
GaussianNorm, 132
Gcd, 12
GlobalPop, 81
GlobalPush, 81
GoldenRatio, 103

HarmonicNumber, 129
HasExpr, 100
HasExprArith, 100
HasExprSome, 100
HasFunc, 100
HasFuncArith, 100
HasFuncSome, 100
Head, 68
HeapSort, 80
HessianMatrix, 57
HilbertInverseMatrix, 58
HilbertMatrix, 58
Hold, 85
Horner, 62

I, 33
Identity, 47
If, 86
Im, 33
Infinity, 103
InProduct, 46
Insert, 71
Integrate, 23
Intersection, 76
InVerboseMode, 116
Inverse, 49
InverseTaylor, 27
IsAmicablePair, 127
IsAtom, 96
IsBoolean, 97
IsBound, 97
IsCarmichaelNumber, 127

IsCFormable, 110
IsComposite, 125
IsConstant, 99
IsCoprime, 125
IsDiagonal, 54
IsEven, 95
IsEvenFunction, 95
IsFreeOf, 94
IsFunction, 96
IsGaussianInteger, 99
IsGaussianPrime, 133
IsGaussianUnit, 132
IsHermitian, 54
IsIdempotent, 56
IsInfinity, 98
IsIrregularPrime, 127
IsList, 96
IsLowerTriangular, 55
IsMatrix, 53
IsNegativeInteger, 97
IsNegativeNumber, 97
IsNegativeReal, 99
IsNonObject, 95
IsNonZeroInteger, 98
IsNotZero, 98
IsNumber, 96
IsNumericList, 97
IsOdd, 95
IsOddFunction, 95
IsOrthogonal, 54
IsPositiveInteger, 98
IsPositiveNumber, 98
IsPositiveReal, 99
IsPrime, 125
IsPrimePower, 126
IsQuadraticResidue, 132
IsRational, 18
IsScalar, 53
IsSkewSymmetric, 55
IsSmallPrime, 125
IsSquareFree, 126
IsSquareMatrix, 54
IsString, 96
IsSymmetric, 55
IsTwinPrime, 126
IsUnitary, 55
IsUpperTriangular, 55
IsVector, 53
IsZero, 18
IsZeroVector, 94

JacobianMatrix, 57
JacobiSymbol, 132

LagrangeInterpolant, 28
LambertW, 32
LaplaceTransform, 35
Lcm, 13
LeadingCoef, 61
LegendreSymbol, 132
Length, 68
LeviCivita, 30
Limit, 23
LispRead, 114
LispReadListed, 114
List, 70

138

Listify, 71
Ln, 21
LnCombine, 37
LnExpand, 37
Load, 115
Local, 107
LocalSymbols, 108

Macro, 88
MakeVector, 69
Map, 68
MapArgs, 89
MapSingle, 69
MatchLinear, 100
MatrixPower, 50
MatrixSolve, 41
Max, 16
MaxEvalDepth, 85
MaximumBound, 43
Min, 15
MinimumBound, 43
Minor, 49
Mod, 12
Moebius, 129
MoebiusDivisorsList, 130
Monic, 62

N, 13
NewLine, 112
Newton, 42
NextPrime, 126
NFunction, 83
Nl, 116
Normalize, 48
Not, 93
NrArgs, 79
Nth, 69
Numer, 16
NumRealRoots, 42

o, 46
Object, 107
OdeOrder, 45
OdeSolve, 45
OdeTest, 45
OldSolve, 40
OMDef, 119
OMForm, 119
OMRead, 119
Or, 94
OrthoG, 65
OrthogonalBasis, 48
OrthoGSum, 66
OrthoH, 64
OrthoHSum, 66
OrthoL, 65
OrthoLSum, 66
OrthonormalBasis, 48
OrthoP, 64
OrthoPoly, 66
OrthoPolySum, 67
OrthoPSum, 66
OrthoT, 65
OrthoTSum, 66
OrthoU, 65
OrthoUSum, 66

Outer, 46

PAdicExpand, 131
Partition, 77
PatchLoad, 115
PatchString, 122
PDF, 123
Permutations, 30
Pi, 103
Plot2D, 116
Plot3DS, 117
Pop, 74
PopBack, 75
PopFront, 75
PrettyForm, 109
PrimitivePart, 61
PrintList, 80
ProperDivisors, 128
ProperDivisorsSum, 129
Pslq, 16
PSolve, 41
Push, 74

RadSimp, 36
RamanujanSum, 131
Random, 24
RandomIntegerMatrix, 25
RandomIntegerVector, 25
RandomPoly, 25
RandomSeed, 24
Rationalize, 14
Re, 33
Read, 113
ReadCmdLineString, 113
ReadToken, 114
RemoveDuplicates, 74
Replace, 72
Reverse, 70
ReversePoly, 27
Rng, 24
RngCreate, 24
RngSeed, 24
Round, 15

Select, 69
Set, 106
SetGlobalLazyVariable, 108
Sign, 22
Simplify, 36
Sin, 19
Solve, 39
SolveMatrix, 50
Space, 111
Sparsity, 51
Sqrt, 21
SquareFree, 62
SquareFreeDivisorsList, 130
SquareFreeFactorize, 62
StirlingNumber1, 130
StirlingNumber2, 130
String, 121
StringMid’Get, 121
StringMid’Set, 121
Subfactorial, 29
Subst, 90
SuchThat, 40

139

Sum, 26
SumForDivisors, 131
Swap, 75
SylvesterMatrix, 59
SystemCall, 87

Table, 81
TableForm, 81
Tail, 68
Take, 77
Tan, 19
Taylor, 26
tDistribution, 123
TeXForm, 110
Time, 92
ToBase, 13
ToeplitzMatrix, 58
ToFile, 112
ToStdout, 113
ToString, 113
Trace, 49
TraceExp, 91
TraceRule, 91
TraceStack, 91
Transpose, 49
TrigSimpCombine, 37
True, 102
Type, 79

Undefined, 103
UnFlatten, 78
Union, 76
UniqueConstant, 108
UnList, 70
Until, 86
Use, 88, 115

V, 116
VandermondeMatrix, 57
VarList, 79
VarListArith, 79
VarListSome, 79

Where, 83
While, 86
WithValue, 90
Write, 111
WriteString, 111
WronskianMatrix, 58

XmlExplodeTag, 118
XmlTokenizer, 118

ZeroMatrix, 47
ZeroVector, 47
Zeta, 31

140

